Меню Рубрики

Жизненный цикл вируса оспы

Вирус вызывает особо опасное высококонтагиозное инфекционное заболевание, характеризующееся общим поражением организма и обильной сыпью на коже и слизистых оболочках. В прошлом отмечались эпидемии и пандемии заболевания, сопровождающиеся высокой летальностью. В 1892 г. Г.Гварниери, исследуя под микроскопом срезы роговицы зараженного кролика, обнаружил специфические включения, впоследствии названные тельцами Гварниери, представляющие собой скопления вирусов натуральной оспы. Возбудитель оспы впервые обнаружен в световом микроскопе Е. Пашеном (1906).

Таксономия. Вирус натуральной оспы – ДНК-содержащий; относится к семейству Poxviridae (от англ, рох – язва), роду Orthopoxvirus.

Морфология, химический состав, антигенная структура. Вирус натуральной оспы является самым крупным вирусом, при электронной микроскопии имеет кирпичеобразную форму с закругленными углами размером 250-400 нм. Вирион состоит из сердцевины, имеющей форму гантели, двух боковых тел, расположенных по обе стороны от сердцевины, трехслойной наружной оболочки. Вирус содержит линейную двунитчатую ДНК, более 30 структурных белков, включая ферменты, а также липиды и углеводы.В составе вируса обнаружено несколько антигенов: нуклео-протеидный, растворимые и гемагглютинин. Вирус натуральной оспы имеет общие антигены с вирусом осповакцины (коровьейоспы).

Культивирование. Вирусы хорошо размножаются в куриных эмбрионах, образуя белые плотные бляшки на хорионаллантоисной оболочке. Репродукция вируса в культуре клеток сопровождается цитопатическим эффектом и образованием характерных цитоплазматических включений (телец Гварниери), имеющих диагностическое значение.

Резистентность. Вирусы оспы обладают довольно высокой устойчивостью к окружающей среде. На различных предметах при комнатной температуре сохраняют инфекционную активность в течение нескольких недель и месяцев; не чувствительны к эфиру и другим жирорастворителям. При температуре 100ºС вирусы погибают моментально, при 60ºС – в течение 15 мин, при обработке дезинфицирующими средствами (фенол, хлорамин) – в течение нескольких часов. Длительно сохраняются в 50 % растворе глицерина, в лиофилизированном состоянии и при низких температурах.

Восприимчивость животных. Заболевание, сходное по клиническим проявлениям с болезнью человека, можно воспроизвести только у обезьян. Для большинства лабораторных животных вирус оспы малопатогенен.

Эпидемиология. Натуральная оспа известна с глубокой древности. В XVII-XVIII вв. в Европе оспой ежегодно болело около 10 млн человек, из них умирало около 1,5 млн. Оспа являлась также главной причиной слепоты. На основании высокой контагиозности, тяжести течения и значительной летальности натуральная оспа относится к особо опасным карантинным инфекциям.

Источником инфекции является больной человек, который заразен в течение всего периода болезни. Вирус передается воздушно-капельным и воздушно-пылевым путями. Возможен контактно-бытовой механизм передачи – через поврежденные кожные покровы.В начале 20-х годов текущего столетия в результате применения оспенной вакцины удалось ликвидировать натуральную оспу в Европе, Северной Америке, а также в СССР (1936). Отечественные ученые В. М. Жданов, М. А. Морозов и др. обосновали возможность осуществления глобальной ликвидации оспы. В 1958 г. по предложению СССР Всемирная организация здравоохранения приняла резолюцию и разработала программу по ликвидации оспы во всем мире, которая была успешно выполнена благодаря глобальной противооспенной вакцинации людей. В 1977 г. в Сомали был зарегистрирован последний случай оспы в мире. Таким образом, оспа исчезла как нозологическая форма.

Патогенез и клиническая картина. Вирус оспы проникает в организм через слизистую оболочку дыхательных путей и реже через поврежденную кожу. Размножившись в регионарных лимфатических узлах, вирусы попадают в кровь, обусловливая кратковременную первичную вирусемию. Дальнейшее размножение вирусов происходит в лимфоидной ткани (селезенка, лимфатические узлы), сопровождается повторным массивным выходом вирусов в кровь и поражением различных систем организма, а также эпидермиса кожи, так как вирус обладает выраженными дерматотропными свойствами. Инкубационный период составляет 8-18 дней. Заболевание начинается остро, характеризуется высокой температурой тела, головной и поясничной болью, появлением сыпи. Для высыпаний характерна последовательность превращения из макулы (пятна) в папулу (узелок), затем в везикулу (пузырек) и пустулу (гнойничок), которые подсыхают с образованием корок. После отпадения корок на коже остаются рубцы (рябины). По тяжести течения различают тяжелую форму («черная» и сливная оспа) со 100% летальностью, среднюю с летальностью 20-40% и легкую с летальностью 1-2%. К числу легких форм натуральной оспы относится вариолоид – оспы у привитых. Вариолоид характеризуется отсутствием лихорадки, малым количеством оспенных элементов, отсутствием пустул или сыпи вообще.

Иммунитет. У переболевших людей формируется стойкий пожизненный иммунитет, обусловленный выработкой антител, интерферона, а также клеточными факторами иммунитета. Прочный иммунитет возникает также в результате вакцинации.

Лабораторная диагностика. Работа с вирусом натуральной оспы проводится в строго режимных условиях по правилам, предусмотренным для особо опасных инфекций. Материалом для исследования служит содержимое элементов сыпи на коже и слизистых оболочках, отделяемое носоглотки, кровь, в летальных случаях – кусочки пораженной кожи, легкого, селезенки, кровь. Экспресс-диагностика натуральной оспы заключается в обнаружении: а) вирусных частиц под электронным микроскопом; б) телец Гварниери в пораженных клетках; в) вирусного антигена с помощью РИФ, РСК, РПГА, ИФА и других специфических реакций. Выделение вируса осуществляют в куриных эмбрионах или клеточных культурах. Идентификацию вируса, выделенного из куриного эмбриона, проводят с помощью РН (на куриных эмбрионах), РСК или РТГА. Вирус, выделенный на культуре клеток, обладает гемадсорбирующей активностью по отношению к эритроцитам кур, поэтому для его идентификации используют реакцию торможения гемадсорбции и РИФ. Серологическую диагностику осуществляют с помощью РТГА, РСК, РН в куриных эмбрионах и на культурах клеток.

Специфическая профилактика и лечение. Живые оспенные вакцины готовят накожным заражением телят или куриных эмбрионов вирусом вакцины (осповакцины). Повсеместная вакцинация населения привела к ликвидации натуральной оспы на земном шаре и отмене с 1980 г. обязательного оспопрививания. Поэтому оспенные вакцины необходимо использовать только по эпидемическим показаниям с целью экстренной массовой профилактики. Методы введения вакцин – накожно или через рот (таб-летированная форма). После вакцинации формируется прочный иммунитет.

Для лечения натуральной оспы, помимо симптоматической терапии, применяли химиотерапевтический препарат – метисазон.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

История открытия вируса оспы, изучение его этимологии, строения. Подвиды вируса натуральной оспы по вирулентности для людей. Изучение патогенеза вируса и его жизненного цикла. Физиология развития болезни. Практическое применение вируса в настоящее время.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство здравоохранения Российской Федерации

Государственное бюджетное образовательное учреждение высшего профессионального образования

«Санкт-Петербургская государственная химико-фармацевтическая академия»

Выполнил (а): студентка 3 курса 222 группы

Андреева Екатерина Алексеевна

Научный руководитель: Ольга Михайловна

  • Введение
  • 1. История открытия вируса
  • 2. Этимология и особенности строения
  • 3. Жизненный цикл
  • 4. Механизм зарождения и развития болезни
    • 4.1 Преодоление барьеров
  • 4.2 Физиология развития болезни
  • 4.3 Иммунные реакции организма на ВНО
  • 5. Практическое применение
  • Список используемой литературы

Несмотря на победу над болезнью, которая стала возможна благодаря сотрудничеству всех стран мира, вирус натуральной оспы все еще жив и активно используется во многих научных исследованиях.

— узнать историю открытия вируса, его этимологию и особенности строения;

— исследовать практическое применение вируса в настоящее время.

Эпидемия чёрной оспы впервые прокатилась по Китаю в IV веке, а в середине VI века — поразила Корею. В 737 году от оспы вымерло более 30 % населения Японии. В VI веке оспа уже хозяйничала в Византии, будучи занесённой в последнюю из Африки. Арабы-мусульмане, приступив к завоеваниям, в VII — VIII веках разнесли оспу от Испании до Индии: история засвидетельствовала появление оспы в Сирии, Палестине и Персии в VII веке, в Сицилии, Италии, Испании и Франции в следующем, VIII столетии.


С VI века оспа фигурирует под сохранившимся до сих пор её латинским названием variola, впервые употреблённым епископом Марием из Аванша в 570 году. С этого времени оспа, под своим несменяемым именем, уносила ежегодно множество жизней в Европе.


Из Европы оспа перешла в Америку, где она похитила много миллионов жизней, вымерли без остатка многие племена.


Начиная с XVII столетия, имеется уже много фактических данных об оспе, зарегистрированных современниками. В общей сумме было вычислено, что в Европе ежегодно умирало от оспы более 1,5 миллионов человек.


Возбудитель оспы относится к вирусам семейства Poxviridae, подсемейства Chordopoxviridae, рода Orthopoxvirus.


По вирулентности для людей ВНО делится на два подвида: Variola major (летальность среди заболевших людей колеблется в пределах от 5 до 40 %); и Variola minor или алястрим (летальность 0,1-2 %).


Вирусы оспы — наиболее крупные из всех вирусов животных. Под электронным микроскопом они выглядят как большие овальные частицы размером около 250-350×200-270 нм.


В структуре вирусов оспы различают три основных компонента: двояковогнутую сердцевину, овальные боковые тела и оболочку вириона. Сердцевину вириона составляют ДНК и связанные с нею белки. Сердцевина окружена гладкой мембраной (толщиной около 5 нм), снаружи покрытой слоем вертикально уложенных и плотно прилегающих друг к другу цилиндрических субъединиц (5×10 нм). Вогнутость сердцевины с обеих сторон занята овальными образованиями (неизвестной природы), называемыми боковыми телами. Они как бы сдавливают сердцевину, придавая ей форму двояковогнутого диска, имеющего на разрезе вид гантели.


Вирионы заключены в липопротеиновую супероболочку, которая имеет толщину 20 — 30 нм и содержит липиды клетки и вирусспецифические белки.


Вирионы большинства вирусов оспы окружены слоем беспорядочно расположенных трубчатых структур, придающих им характерный вид. Эти структуры состоят из сферических субъединиц диаметром около 5 нм. Субъединицы построены из молекул протеина или гликопротеина. В состав ворсинок длиной 20 нм покрывающих поверхность вируса осповакцины (ВОВ), входит белок с молекулярной массой 58 кД, относящийся к главным полипептидам вириона.


Вирус осповакцины содержит белки, липиды и ДНК, которые соответственно составляют 90, 5 и 3,2% массы вириона (5х10

15 г). В вирусе оспы птиц около 1/3 массы составляют липиды.

Вирионы, содержащие двухцепочечную геномную ДНК, ферменты, факторы транскрипции, адсорбируются на клетке (1) и сливаются с плазматической мембраной клетки, высвобождая сердцевины в цитоплазму (2). Сердцевины синтезируют ранние мРНК, с которых транслируются различные белки, включая факторы роста, молекулы защиты от иммунной системы, ферменты и факторы для репликации ДНК и транскрипции промежуточных генов (3). Происходит раздевание сердцевины (4) и вирусная ДНК реплицируется, формируя конкатемерные молекулы (5). Промежуточные гены транскрибируются на дочерних молекулах ДНК и с этих мРНК транслируются факторы поздней транскрипции (6). Затем транскрибируются поздние гены. С их мРНК транслируются вирионные структурные белки, ферменты и факторы ранней транскрипции (7). Сборка вирионов начинается с образования дискретных мембранных структур (8). Конкатемерные промежуточные формы вирусной ДНК разделяются на единичные геномы и упаковываются в незрелые вирионы (9). Созревание приводит к образованию внутриклеточных зрелых вирионов (10). Эти вирионы покрываются модифицированными мембранами аппарата Гольджи и перемещаются к периферии клетки (11). Слияние таких вирионов с плазматической мембраной завершается высвобождением внеклеточных вирионов. Хотя размножение вируса происходит полностью в цитоплазме, ядерные факторы могут быть вовлечены в процессы транскрипции генов и сборки вирионов.


РНК-вирусы имеют определенный лимит генетической сложности, обусловленный небольшими размерами их геномов — от 3 до 30 кб. Однако они более эффективно, чем ДНК-вирусы используют мутационный процесс для изменения своей антигенной структуры и тропизма в организме хозяина, а также для уклонения от антител и цитотоксических лимфоцитов. Высокую частоту мутаций у РНК-вирусов обычно объясняют отсутствием механизмов корректировок в синтезе РНК. Все молекулы вирусной РНК обычно реплицируют через ассиметричную транскрипцию от одной цепи, исключающую большинство корректирующих механизмов, характерных для репликации молекул ДНК. S. Holland и соавт. (1982) экспериментально доказали, что вероятность ошибки во время копирования РНК-молекулы будет в 105 — 107 раз больше, чем при копировании ДНК-молекулы. Ими также была установлена средняя частота мутаций для РНК-вирусов, составляющая приблизительно 10-4,5. Это означает, что до 10% всех молекул РНК в популяции вируса, могут содержать мутации.


Инфекционные частицы поксвирусов содержат в своем составе полную ферментативную систему транскрипции, способную синтезировать функциональную мРНК в полиаденилированной, кэпированной и метилированной форме. Это позволяет ВНО:


1) самостоятельно осуществлять эффективную защиту от ранних специфических реакций на инфекцию и противодействовать развивающимся позже специфическим реакциям;


ВНО variola maior обуславливает генерализованную инфекцию, которая в высоком проценте случаев завершается летальным исходом. Для этого вирус располагает беспрецедентным, по сравнению с вирусами других семейств, набором генов, белковые продукты которых эффективно изменяют многочисленные защитные реакции организма.


Рис.4. Общая схема синтеза ВНО молекулярных факторов, обеспечивающих вирусу преодоление защитных барьеров человека


Первым неспецифическим и, возможно, самым древним барьером, который вынужден преодолевать ВНО, является программированная гибель клеток (апоптоз). Инфицирование клетки запускает механизм ее самоубийства, благодаря чему предотвращается размножение вируса и его распространение среди соседних клеток. ВНО располагает, по крайней мере, четырьмя генами, белковые продукты которых ингибируют апоптоз по альтернативным и дублирующим механизмам.


Вторым неспецифическим барьером являются местные воспалительные процессы. Они быстро индуцируются для ограничения распространения вируса в первые часы и дни после инфицирования, пока формируется полноценный иммунный ответ. ВНО несет гены не менее чем пяти белков, блокирующих различные этапы развития воспаления в участках размножения вируса (SPI-2, G3R, растворимых аналогов рецепторов фактора некроза опухолей — TNF и гамма-интерферона — гаммаlFN) и предотвращающих развитие системных реакций (растворимый рецептор интерлейкина-1бета — IL-1 бета). Как правило, все эти белки обладают одновременно несколькими активностями. Например, TNF-связывающий белок необходим еще и для развития генерализованной инфекции, столь характерной для ВНО. Поэтому эти белки считаются факторами вирулентности.


Система блокирования интерферона у ВНО также мультигенна (не менее 5 белков), поэтому он очень устойчив к его действию. Синтезируемые вирусом аналоги растворимых рецепторов IFN обоих типов, интерферируют с IFN, связывая его клеточные рецепторы. Это приводит к блокированию антивирусного состояния клетки и предотвращает лейкоцитарную инфильтрацию в участки вирусной репликации.


Для облегчения распространения ВНО по тканям организма хозяина, в его геноме содержится ген C11R VAC-COP, кодирующий белок VGF, отнесенный к семейству эпидермального фактора роста. Он стимулирует рост и / или метаболическую активность неинфицированных клеток, обеспечивая тем самым распространение ВНО по организму. На эффективность диссеминации ВНО в организме человека также влияют белки оболочки внеклеточных вирионов (прежде всего, гемагглютинин) и анкиринподобные белки (определяют круг хозяев вируса). Пока не идентифицированы вирусные белки, подавляющие созревание гликопротеидов главного комплекса гастосовместимости класса I и тем самым снижающих эффективность представления на поверхности инфицированной клетки вирусных антигенов специфическим цитотоксическим Т-лимфоцитам.


Однако большое количество синтезируемых ВНО белковых структур неизбежно обнаруживаются иммунной системой хозяина. Поэтому, патогенез ВНО построен на компромиссе между скоростью развития иммунного ответа хозяина (индуцируется полный спектр клеточно-опосредованных и гуморальных иммунных ответных реакций) и скоростью размножения вируса до количеств, достаточных для его передачи другому реципиенту.


У переболевших оспа оставляет длительный, стойкий и стерильный иммунитет, что исключает возможность повторного использования вирусом для своего размножения того же хозяина. Эта та цена, которую вирус платит за сложность своего генома иммунной системе человека. Однако заболевший успевает инфицировать от 5 (в среднем) до 38 человек, из них не менее трети погибнет — это уже цена, которую платим мы за то же самое.


ВНО среди людей распространяется воздушно-капельным путем. В организме человека он предварительно накапливается в альвеолярных макрофагах, затем по лимфатическим путям проникает в лимфатические узлы, где происходит его репликация. Ортопоксвирусы в отношении фагоцитирующих клеток ведут себя как паразитические организмы и используют их для своего размножения. Разрушившиеся фагоцитирующие клетки становятся источником вируса, а через 2 — 3 суток его обнаруживают уже в крови (первичная виремия), костном мозге, печени и селезенке.


В пробах крови больного натуральной оспой в этот период инфекционного процесса можно обнаружить как инфицированные, так и не инфицированные лейкоциты, но в основном репликация ВНО происходит в моноцитах / макрофагах. Лимфоциты остаются неинфицированными, они сохраняют свою функцию, хотя при этом и наблюдается выраженная лимфопения. Вирус распространяется из лимфатических узлов фагоцитирующими клетками крови по внутренним органам через выносящие (эфферентные) лимфатические сосуды. Затем вирус проникает в эпителий кожи и слизистых, где начинается его репликация. Появляются энантемы и экзантемы, инфицирование которых вторичной микрофлорой определяет эволюцию кожных элементов из везикул в пустулы. Количество вируса через 4 — 5 суток уже превышает емкость ретикуло-эндотелиальной системы, и он вновь проникает в кровяное русло.


Вторичная виремия обычно соответствует началу клинической манифестации болезни. Специфические антитела выявляются в крови на седьмые сутки после инфицирования, и их максимальный уровень достигается на 14 сутки. Уже на 10-е сутки болезни заразность больного для окружающих резко снижается. Через 4 недели от начала болезни вирус невозможно выделить из отделяемого носоглотки и из мочи реконвалесцента. У выживших людей развивается стерильный иммунитет.


Интенсивная репликация ВНО в макрофагах сопровождается явлением, которое из-за его неблагоприятного исхода, назвали «цитокиновым штормом» («cytokine storm»). Оно проявляется каскадной активацией и выбросом инфицированными макрофагами значительных количеств различных лимфокинов (monocyte chemoattractant protein 1, macrophage inflammatory protein 1бета, IFN-гамма, IL-6 и др.) и развитием клиники токсемии и шока, приводящих больного к смерти.


Для освобождения организма от ортопоксвирусов, необходимо участие в иммунных ответах CD4 + T-клеток — субпопуляция Т-клеток, оказывающая помощь В-клеткам в продукции специфических антител; и MHC класса II — эти молекулы локализованы на поверхности макрофагов и обеспечивают включение в иммунный ответ CD4 T-клеток. В ответах на острую инфекцию, вирусоспецифические антитела наиболее эффективно освобождают организм от вируса. Вирус разрушается по различным механизмам, предполагающим участие таких антител. Во-первых, антитела могут непосредственно связывать вирус, вызывая его агрегацию и препятствуя адсорбции и интернализации в клетках. Во-вторых, они могут связывать вирус, вызывая его разрушение с помощью комплемента или опсонизации, а затем посредством фагоцитоза. Антитела могут связывать инфицированные клетки хозяина, вызывая цитотоксические реакции со стороны клеток-киллеров и др.


Геморрагическая форма натуральной оспы с летальным исходом развивалась у людей с врожденными дефектами иммунной системы, проявившимися отсутствием антител в ответ на вакцинацию против натуральной оспы. При инфицировании таких больных ВНО, у них развивалась выраженная виремия, вирус в высоких титрах обнаруживали в фарингеальном тракте.


ВНО и другие ортопоксвирусы представляют собой очень благодарный для иммунолога объект исследования, так как реакции иммунной системы человека на них всегда укладываются в представления об иммунитете и инфекции, сложившиеся еще в начале ХХ столетия. В таких исследованиях открывается обширное поле деятельности по детализации прописных истин из старых учебников, поэтому они всегда «глубоко научны».


Основной антигеной детерминантой поксвирусов и мишенью для протективных антител является консервативный белок L1 (другое название L1R). У вируса вакцины (так называют ортопоксвирус, используемый в настоящее время для вакцинации людей против ВНО), вируса оспы обезьян и ВНО этот белок различается отдельными аминокислотами. Антитела к L1 способны блокировать инвазию ортопоквирусов в клетки. Поэтому он рассматривается учеными в качестве кандидата на включение в перспективные противооспенные вакцины.


Вакцинация обычно предупреждает заражение ВНО в течение, по меньшей мере, 5-10 лет. При развитии болезни ее симптомы у вакцинированных лиц менее выражены, чем у невакцинированных. Так как специфические антитела считаются «первой линией обороны» против вторжения возбудителей инфекционных болезней, их обычно выявляют для оценки иммунной защиты индивидуума. По данным Gallwitz S. et al. (2003), использовавших ферментативный иммуноанализ для поиска антител к вирусу вакцины у лиц, вакцинированных 30-60 лет назад, их можно обнаружить у 65% обследуемых, вакцинированных однократно; и у 80 % обследуемых, вакцинированных два раза и более. Crotty S. et al. (2003) продемонстрировали присутствие у лиц, вакцинированных более 50 лет назад, В-клеток памяти, специфических к вирусу вакцины. Количество таких клеток после вакцинации снижается в течение нескольких лет до уровня, представляющего примерно десятую часть от достигнутого максимума. Далее количество противооспенных антител (0,1% от общего количества IgG + B-клеток) не меняется практически на протяжении всей оставшейся жизни вакцинированного. Этим объясняется выраженная антительная реакция на противооспенную ревакцинацию. В опытах Frey S.E. et al. (2003) вакцинация ранее вакцинированных лиц давала очень хороший результат даже при десятикратном разведении вакцины.

1. Научный обзор исследований вируса натуральной оспы, 1999-2010 гг. Antonio Alcami, Inger Damon, David Evans, John W. Huggins, Christine Hughes, Peter B. Jahrling, Grant McFadden, Hermann Meyer, Bernard Moss, Sergei Shchelkunov, Evgeni Stavskiy, Nina Tikunova. Всемирная организация здравоохранения, 2011 г.

2. Консультативный комитет ВОЗ по исследованию вируса натуральной оспы. Всемирная организация здравоохранения. Доклад пятнадцатого совещания, Женева, Швейцария, 24-25 сентября 2013 г.

3. Супотницкий М.В. Эволюционная патология. К вопросу о месте ВИЧ-инфекции и ВИЧ/СПИД-пандемии среди других инфекционных, эпидемических и пандемических процессов — М., 2009. — 400 с.: ил.

4. Супотницкий М.В. Натуральная оспа, оспа обезьян. В кн.: Супотницкий МВ. Биологическая война. Введение в эпидемиологию искусственных эпидемических процессов и биологических поражений. М.: «Кафедра», «Русская панорама»; 2013.

5. Супотницкий М.В. Микроорганизмы, токсины и эпидемии. Глава 1.6. Патогенность вирусов.

6. http://www.who.int/ru/ Всемирная организация здравоохранения, 2015 г.

Исследование понятия и основных особенностей ДНК-геномных вирусов. Изучение жизненного цикла вируса. Характеристика вируса папилломы человека. Описание болезней, вызываемых вирусом папилломы человека. Лабораторная диагностика папилломавирусной инфекции.

реферат [94,2 K], добавлен 17.03.2014

Вирус иммунодефицита человека — ретровирус из рода лентивирусов, вызывающий медленно прогрессирующее заболевание — ВИЧ-инфекцию. Схематическое строение вируса. Проникновение ВИЧ в клетку человека. Транспорт вирусной ДНК в ядро и интеграция в геном.

презентация [20,6 M], добавлен 03.05.2017

Латенция и вирогения как типы взаимодействия вируса с клеткой. Процесс адсорбции вируса и его проникновения в клетку, синтез вирусных белков. Этапы созревания дочерних вирусных частиц, способы их выхода из клетки, общие принципы сборки вирионов.

реферат [18,6 K], добавлен 29.09.2009

Отрицательная роль вирусов в жизни человека как возбудителей ряда опасных заболеваний: оспы, гепатита, энцефалита, краснухи, кори, бешенства, гриппа. «Индикаторы жизни»: происхождение и природа вирусов, их строение. Взаимодействие вируса с клеткой.

реферат [164,7 K], добавлен 01.04.2009

Вирусы как первая форма жизни на Земле и возбудители болезней. Предыстория их открытия. Схема проведения биологического эксперимента. Строение вируса и бактериофага. Виды вирусных заболеваний человека. Жизненный цикл вируса иммунодефицита человека.

Читайте также:  Отличие фанеры от оспы

презентация [690,1 K], добавлен 27.02.2011

Свойства вирусов, особенности их строения и классификация. Взаимодействие вируса с клеткой. Процессы, связанные с размножением вируса. Описание основных вирусных заболеваний. Эволюция вирусов на современном этапе. Влияние загрязнения внешней среды.

реферат [466,4 K], добавлен 24.03.2011

Организация генома и кодируемые белки вируса иммунодефицита человека. Транскрипция провирусной дезоксирибонуклеиновой кислоты и синтез вирусных веществ. Анализ получения сыворотки и плазмы крови. Характеристика референсных сиквенсов и электрофореграмм.

дипломная работа [1,3 M], добавлен 04.06.2017

Схема строения булавовидного бактериофага. Жизненный цикл вируса на примере ортомиксовирусов, к которым относятся вирусы гриппа А, В и С типов. Описание вирусов иммунодефицита человека (ВИЧ), вызывающего СПИД, табачной мозаики, герпеса 8 типа, гриппа.

презентация [864,8 K], добавлен 07.09.2010

Таксономия вируса и морфология вириона. Антигенная структура и вариабельность. Гемагглютинирующие и гемадсорбирующие свойства вирусов, их культивирование в различных живых системах. Диагностика чумы плотоядных. Способы введения вакцин и схема вакцинации.

реферат [33,6 K], добавлен 25.04.2015

Эволюционное происхождение. Свойства вирусов. Природа вирусов. Строение и классификация вирусов. Взаимодействие вируса с клеткой. Значение вирусов. Вирусные заболевания. Особенности эволюции вирусо на соременном этапе.

реферат [299,2 K], добавлен 22.11.2005

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

источник

Весь контент iLive проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.

У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.

Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.

Семейство Poxviridae (англ. рох — оспа + вирусы) включает два подсемейства: Chordopoxvirinae, куда входят вирусы оспы позвоночных, и Entomopoxvirinae, объединяющее вирусы оспы насекомых. Подсемейство вирусов оспы позвоночных, в свою очередь, включает 6 самостоятельных родов и несколько неклассифицированных вирусов. Представители каждого рода имеют общие антигены и способны к генетической рекомбинации. Роды отличаются друг от друга по процентному содержанию и свойствам ДНК, расположению и форме нитеобразных структур на внешней оболочке вириона, устойчивости к эфиру, гемагглютинирующим свойствам и другим признакам.

[1], [2], [3], [4], [5]

Представители рода Orthopoxvirus — вирусы натуральной оспы, оспы обезьян и осповакцины. Вирус натуральной оспы вызывает особо опасную инфекцию человека, которая усилиями мирового сообщества ликвидирована в середине 70-х гг. XX в. Вирус оспы обезьян патогенен не только для приматов: описаны случаи у людей, по течению напоминающие натуральную оспу. Учитывая это обстоятельство, полезно иметь общие представления о микробиологии натуральной оспы.

Наиболее изученным представителем рода Orthopoxvirus является вирус осповакцины, который произошел либо от вируса коровьей оспы, либо от вируса натуральной оспы. Он адаптирован к организму человека и долгое время использовался как первая живая вирусная вакцина.

Вирус натуральной оспы и другие представители этого рода — самые крупные из всех известных вирусов животных. Это один из самых высокоорганизованных вирусов животных, приближающийся по строению некоторых структур к бактериям. Вирион имеет форму кирпича с несколько закругленными углами и размер 250- 450 нм. Он состоит из хорошо различимой сердцевины (нуклеоида, или ядра), содержащей геномную двунитевую линейную молекулу ДНК с молекулярной массой 130-200 МД, ассоциированную с белками. По обе стороны от нуклеоида расположены овальные структуры, называемые белковыми телами. Сердцевина и боковые тела окружены четко различимой поверхностной оболочкой с характерной бороздчатой структурой. Стенка сердцевины состоит из внутренней гладкой мембраны толщиной 5 нм и наружного слоя из регулярно расположенных цилиндрических субъединиц. Вирус имеет химический состав, напоминающий бактериальный: он содержит не только белок и ДНК, но и нейтральные жиры, фосфолипиды, углеводы.

Поксвирусы — единственные из ДНК-содержащих вирусов, размножающиеся в цитоплазме клетки-хозяина. Цикл репродукции вируса складывается из следующих основных этапов. После адсорбции на поверхности чувствительной клетки вирус проникает в цитоплазму путем рецепторопосредованного эндоцитоза, и далее происходит двухэтапное «раздевание» вириона: сначала под действием протеаз клетки разрушается наружная оболочка, происходит частичная транскрипция и синтез сверхранних мРНК, кодирующих синтез белка, ответственного за дальнейшее раздевание. Параллельно с этим идет репликация вДНК. Дочерние копии ДНК транскрибируются, синтезируются поздние мРНК. Затем идет трансляция, и синтезируется около 80 вирусспецифических белков с молекулярной массой от 8 до 240 кД. Часть из них (около 30) является структурными белками, остальные — ферменты и растворимые антигены. Особенностью размножения поксвирусов можно считать модификацию ими клеточных структур, которые превращаются в специализированные «фабрики», где происходит постепенное созревание новых вирусных частиц. Созревшее вирусное потомство покидает клетку либо при ее лизисе, либо путем отпочковывания. Цикл репродукции вирусов оспы занимает около 6-7 ч.

Вирус оспы обладает гемагглютинирующими свойствами; гемагглютинин состоит из трех гликопротеидов. Важнейшими антигенами являются: NP-нуклеопротеидный, общий для всего семейства; термолабильный (Л) и термостабильный (С), а также растворимые антигены.

Поксвирусы выдерживают высушивание (особенно в патологическом материале) в течение многих месяцев при комнатной температуре, устойчивы к эфиру, в 50 % растворе этанола при комнатной температуре инактивируются в течение 1 ч, а в 50 % растворе глицерина при температуре 4 °С сохраняются в течение нескольких лет. Устойчивы к большинству дезинфицирующих веществ: 1 %-ный фенол или и 2 %-ный формальдегид при комнатной температуре инактивируют их только в течение 24 ч, 5 %-ный хлорамин — в течение 2 ч.

К вирусу натуральной оспы восприимчивы человек, а также обезьяны. При экспериментальном заражении в мозг новорожденных мышей развивается генерализованная инфекция, заканчивающаяся летально; для взрослых мышей вирус непатогеген. Он хорошо размножается в куриных эмбрионах при заражении на хорионаллантоисную оболочку, в амнион, в желточный мешок и аллантоисную полость. На хорионаллантоисной оболочке 10-12-дневных куриных эмбрионов вирус натуральной оспы дает мелкие белые бляшки; вирус осповакцины вызывает поражения больших размеров, с черной впадиной в центре, вызванной некрозом. Важным дифференциальным признаком вируса натуральной оспы является предельная температура размножения вируса в курином эмбрионе 38,5 °С.

К вирусу натуральной оспы чувствительны первичные и перевиваемые культуры клеток, полученные от человека, обезьян и других животных. На культуре клеток опухолевого происхождения (HeLa, Vero) вирус натуральной оспы образует мелкие бляшки пролиферативного типа, в то время как при заражении вирусом оспы обезьян клеток Vero выявляются круглые, с литическим центром бляшки. В клетках почки эмбриона свиньи вирус натуральной оспы способен вызывать четкий цитопатический эффект, которого не бывает при заражении этих клеток вирусом оспы обезьян. В клетках HeLa вирус натуральной оспы вызывает круглоклеточную дегенерацию, тогда как вирусы оспы обезьян и верблюдов вызывают дегенерацию с образованием многоядерных клеток.

[6], [7], [8]

источник

20. Взаимодействие вируса с клеткой. Фазы жизненного цикла. Понятие о персистенции вирусов и персистентных инфекциях.

Типы взаимодействия вируса с клеткой. Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и ин-тегративный.

Продуктивный тип — завершается обра­зованием нового поколения вирионов и ги­белью (лизисом) зараженных клеток (цитоли-тическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

Абортивный тип — не завершается обра­зованием новых вирионов, поскольку инфек­ционный процесс в клетке прерывается на одном из этапов.

Интегративный тип, или вирогения — характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).

Репродукция вирусов осуществляется в несколько стадий, последовательно сменяющих друг друга: адсорбция вируса на клетке; проникновение вируса в клетку; «раздевание» вируса; биосинтез вирусных компонентов в клетке; формирование вирусов; выход вирусов из клетки.

Адсорбция. Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбирует­ся на определенных участках клеточной мембраны — так назы­ваемых рецепторах. Клеточные рецепторы могут иметь разную хи­мическую природу, представляя собой белки, углеводные ком­поненты белков и липидов, липиды. Число специфических ре­цепторов на поверхности одной клетки колеблется от 10 4 до 10 5 . Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.

Проникновение в клетку. Существует два способа проникнове­ния вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорб­ции вирусов происходят инвагинация (впячивание) участка кле­точной мембраны и образование внутриклеточной вакуоли, ко­торая содержит вирусную частицу. Вакуоль с вирусом может транс­портироваться в любом направлении в разные участки цитоплаз­мы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.

«Раздевание». Процесс «раздевания» заключается в удалении защитных вирусных оболочек и освобождении внутреннего ком­понента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с кле­точной мембраной процесс проникновения вируса в клетку со­четается с первым этапом его «раздевания». Конечными продук­тами «раздевания» являются сердцевина, нуклеокапсид или нук­леиновая кислота вируса.

Биосинтез компонентов вируса. Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирус­ные белки и нуклеиновые кислоты, идущие на построение ви­русного потомства.

Реализация генетической информации вируса осуществляет­ся в соответствии с процес­сами транскрипции, трансляции и репликации.

Формирование (сборка) вирусов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфи­чески «узнавать» друг друга и при достаточной их концентра­ции самопроизвольно соединяются в результате гидрофобных, со­левых и водородных связей.

Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:

1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;

2. Сборка просто устроенных вирусов заключается во взаимодей­ствии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала форми­руются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);

3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;

4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).

Выход вирусов из клетки. Различают два основных типа выхо­да вирусного потомства из клетки. Первый тип — взрывной — характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип — почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нук­леокапсиды сложно устроенных вирусов фиксируются на клеточ­ной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячива­ния образуется «почка», содержащая нуклеокапсид. Затем «поч­ка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При та­ком механизме клетка может продолжительное время продуци­ровать вирус, сохраняя в той или иной мере свои основные функции.

Время, необходимое для осуществления полного цикла реп­родукции вирусов, варьирует от 5—6 ч (вирусы гриппа, нату­ральной оспы и др.) до нескольких суток (вирусы кори, адено­вирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репро­дукции. Взаимодействие вируса с клеткой хозяина.

Существует несколько типов взаимодействия с клеткой.

1. Продуктивная инфекция протекает в несколько стадий:

1. Адсорбция вириона на клетке – осуществляется за счёт специфического взаимодействия антирецептора вириона с комплементарным рецепторами мембраны клетки хозяина. Не зависит от температуры.

2. Проникновение вируса в цитоплазму клетки (пенетрация). У просто устроенных вирусов осуществляется путем эндоцитоза – образуется эндоцитарная вакуоль, в которую заключен вирион. У сложноустроенных вирусов осуществляется путем слияния клеточной мембраны с мембраной суперкапсида.

3. Депротеинизация (раздевание вируса). Осуществляется клеточными ферментами, разрушающими капсид. При этом вирусный геном освобождается от капсида (белка). Вирус на время как бы исчезает. Эта стадия называется эклипс.

4. Синтез вирусных компонентов (генома и белка). Синтез разобщен во времени и протекает в разных частях клетки. На этой стадии синтезируются вирусные белки и нуклеиновые кислоты.

Стратегия вирусного генома

ДНК — содержащие вирусы: аденовирусы, ретровирусы (онкогенны), вирус гепатита В, герпес;

• В ядре пораженной клетки с вирусной ДНК синтезируется информационная РНК с учатием ДНК-полимеразы. Днк – иРНК – ДНК вируса.

• У вирусов с +РНК пикорна-, тогавирусы., гепатит А, Е и др., функцию иРНК выполняет сам геном. Все компоненты синтезируются только в цитоплазме. РНК вируса — +РНК – белок вируса.

• У вирусов с –РНК орто-, парамиксо-, рабдовирусы и др. В цитоплазме пораженной клетки. РНК вируса – РНК – иРНК – белок вируса.

• РНК-содержащие ретровирусы (ВИЧ) имеют обратную транскриптазу или ревертазу. В ядре пораженной клетки с РНК синтезируется ДНК вируса. РНК вируса – РНК – ДНК – иРНК – белок вируса

Ферменты, осуществляющие синтез вирусных нуклеиновых кислот:

• РНК-зависимая – ДНК-полимераза (обратная транскриптаза).

• Может происходить в цитоплазме или на внутренней поверхности клеточной мембраны.

• Осуществляется по принципу самосборки на основе белок-белкового и белок-нуклеинового узнавания.

• Просто устроенные вирионы выходят из клетки путем взрыва;

• Сложно устроенные выходят методом почкования.

У вирусов герпеса, гепатита В, ВИЧ в цикле репродукции имеется стадия интеграции (встраивания) вирусного генома в геном клетки хозяина.

Интегрированная в клеточный геном вирусная ДНК называется провирусом.

!Вирусы не растут на питательных средах!. Для культивирования вирусов используются биологические модели:

источник

Вирус натуральной оспы – таково его полное имя – является представителем большого семейства поксвирусов (от английского слова «рох» – оспа). Поксвирусы – самые крупные из вирусов животных, их размер 250–300 нанометров. Частицы поксвирусов можно увидеть даже в световой микроскоп. Вирус натуральной оспы был открыт именно под световым микроскопом в 1906 году.

Вирионы вируса натуральной оспы выглядят как овальные тельца или как тельца прямоугольной формы, напоминающие кирпич или спичечный коробок со сглаженными ребрами. Сердцевина содержит генетический материал вируса – двунитевую ДНК вкупе с многочисленными белками. На поперечном срезе вириона сердцевина имеет форму гантели, потому что сверху и снизу по центру она сдавлена боковыми телами. Все это хозяйство покрыто оболочкой, на внешней поверхности которой видны бороздки. И, наконец, внеклеточные частицы вируса оспы покрыты еще одной оболочкой, состоящей из липидов; возможно, как часто бывает, эту оболочку вирус заимствует у клетки.

Схема строения вируса натуральной оспы: 1 – сердцевина, содержащая двунитевую ДНК; 2оболочка сердцевины; 3боковые тела;4оболочка вириона

Вирус оспы не зря такой крупный. Под его оболочками упрятано многое, чего более мелкие и более просто устроенные вирусы не могут себе позволить. Например, вирус может сам, без помощи клетки, изготовлять полноценные информационные РНК. Для этого надо много разных ферментов, и все они у вируса есть. Поэтому, проникнув в клетку, вирус не тратит время на раскачку – уже через несколько минут в клетке начинается синтез вирусных белков.

Вирус попадает в организм через слизистую оболочку верхних дыхательных путей. Вначале он накапливается в лимфатических узлах и в печени, а затем кровью разносится по всему организму. В отличие от большинства вирусов, испытывающих неодолимую тягу к тому или иному типу тканей, для размножения вируса натуральной оспы годятся любые клетки, в том числе и клетки кожи, поэтому вирус натуральной оспы вызывает образование сыпи. Вирус оспы поражает глубокие слои кожи, так что после выздоровления на месте сыпи остаются рубцы, «оспины».

Болезнь начинается внезапно – поднимается температура, возникает головная боль, появляются боли в животе, потом температура падает, и возникают поражения на коже, во всех внутренних органах и на всех слизистых в виде характерной оспенной корочки. Смерть наступает через 3–4 дня. Умирает примерно половина заболевших, а еще каждого пятого поражает слепота, потому что оспенная корочка образуется и на роговице глаза. Перенесенное заболевание оставляет после себя стойкий пожизненный иммунитет.

Клиническая картина натуральной оспы настолько характерна, что заболевание определяется просто по внешнему виду больного. Беда в том, что врачей, которые видели настоящего больного оспой, в мире остались единицы, и первые два дня заболевания, когда у больного начинается головная боль и поднимается температура, ни о чем не говорят современному врачу, совершенно не ожидающему встретить оспу. А именно в эти два дня человек усиленно заражает ничего не подозревающих окружающих – заражает воздушнокапельным путем, потому что слюна и выделения из носоглотки содержат громадное количество вируса. Этот способ распространения вирусов вообще считается самым опасным, потому что его труднее всего прервать. Даже при обычном разговоре капельки слюны разлетаются на расстояние до полутора метров. По этой причине инфекционные оспенные бараки всегда устраивались на большом расстоянии от жилых районов или даже на кораблях, стоящих на якоре в открытом море. Зарегистрирован случай заболевания оспой, когда человек просто проезжал на автобусе мимо инфекционного барака, где находились больные оспой.

В первые дни заболевания вирус, проникший в кожу, еще слишко глубоко зарыт и опасности не представляет. Другое дело, когда на коже возникнут и покроются корочкой пузырьки. В таких корочках вирус высыхает и очень долго сохраняет свою заразность. Больной заразен до тех пор, пока у него на теле есть хотя бы одна корочка. Заражение может происходить при контакте с постельным бельем больного, при вдыхании пыли в его комнате. Однажды в Великобритании источником инфекции послужил хлопок, привезенный из–за моря. Вирус сохраняется в трупах. Даже если они закопаны на большую глубину, почвенные животные рано или поздно выносят вирус на поверхность почвы, на траву, и он может попасть к скоту вместе со съеденной травой.

Натуральная оспа известна очень давно – вирус обнаружен микроскопически в язвенных поражениях египетских мумий. А вот живший семь столетий позже Гиппократ (IV век до н.э.) об оспе нигде не упоминает. Спустя еще шесть столетий, во II веке нашей эры, натуральную оспу описывает римский врач Гален, однако его современникам она не представляется грозной болезнью. Но в средние века оспа превратилась в то страшное бедствие – черную смерть, от которой вымирали целые города и одно название которой являлось символом всенародного бедствия.

источник

Вирус (лат. virus — «яд») — неклеточный инфекционный агент, который может воспроизводиться только внутри живых клеток. Вирусы поражают все типы организмов, от растений и животных до бактерий и архей (вирусы бактерий обычно называют бактериофагами). Обнаружены также вирусы, поражающие другие вирусы(вирусы-сателлиты).

Полноценная по строению и инфекционная, т.е. способная вызвать заражение, вирусная частица вне клетки называется вирионом. Сердцевина («ядро») вириона содержит одну молекулу, а иногда две или несколько молекул нуклеиновой кислоты. Белковый чехол, покрывающий нуклеиновую кислоту вириона и защищающий ее от вредных воздействий окружающей среды, называется капсидом. Нуклеиновая кислота вириона является генетическим материалом вируса (его геномом) и представлена дезоксирибонуклеиновой кислотой (ДНК) или рибонуклеиновой кислотой (РНК), но никогда двумя этими соединениями сразу. (Хламидии, риккетсии и все другие «истинно живые» микроорганизмы содержат одновременно ДНК и РНК.) Нуклеиновые кислоты самых мелких вирусов содержат три или четыре гена, тогда как самые крупные вирусы имеют до ста генов.

У некоторых вирусов в дополнение к капсиду имеется еще и внешняя оболочка, состоящая из белков и липидов. Она образуется из мембран зараженной клетки, содержащих встроенные вирусные белки. Термины «голые вирионы» и «лишенные оболочки вирионы» используются как синонимы. Капсиды самых мелких и просто устроенных вирусов могут состоять лишь из одного или нескольких видов белковых молекул. Несколько молекул одного или разных белков объединяются в субъединицы, называемые капсомерами. Капсомеры, в свою очередь, образуют правильные геометрические структуры вирусного капсида. У разных вирусов форма капсида является характерной особенностью (признаком) вириона.

Вирионы со спиральным типом симметрии, как у вируса табачной мозаики, имеют форму удлиненного цилиндра; внутри белкового чехла, состоящего из отдельных субъединиц – капсомеров, находится свернутая спираль нуклеиновой кислоты (РНК). Вирионы с икосаэдрическим типом симметрии (от греч. eikosi – двадцать, hedra – поверхность), как у полиовируса, имеют сферическую, а точнее, многогранную форму; их капсиды построены из 20 правильных треугольных фасеток (поверхностей) и похожи на геодезический купол.

У отдельных бактериофагов (вирусов бактерий; фагов) смешанный тип симметрии. У т.н. «хвостатых» фагов головка имеет вид сферического капсида; от нее отходит длинный трубчатый отросток – «хвост».

Встречаются вирусы с еще более сложным строением. Вирионы поксвирусов (вирусы группы оспы) не имеют правильного, типичного капсида: между сердцевиной и наружной оболочкой у них располагаются трубчатые и мембранные структуры.

Жизненный цикл:

Вирусы не размножаются клеточным делением, поскольку не имеют клеточного строения. Вместо этого они используют ресурсы клетки-хозяина для образования множественных копий самих себя, и их сборка происходит внутри клетки.

Условно жизненный цикл вируса можно разбить на несколько взаимоперекрывающихся этапов (обычно выделяют 6 этапов [95] ):

Прикрепление представляет собой образование специфичной связи между белками вирусного капсида и рецепторами на поверхности клетки-хозяина. Это специфичное связывание определяет круг хозяев вируса. Например, ВИЧ поражает только определённый тип человеческих лейкоцитов. Это связано с тем, что оболочечный гликопротеин вируса gp120 специфично связывается с молекулой CD4 — хемокиновым рецептором, который обычно встречается на поверхности CD4-положительных T-лимфоцитов. Этот механизм обеспечивает инфицирование вирусом только тех клеток, которые способны осуществить его репликацию. Связывание с рецептором может вызвать конформационные изменения белка оболочки (или белка капсида в случае безоболочечного вируса), что в свою очередь служит сигналом к слиянию вирусной и клеточной мембран и проникновению вируса в клетку.

Читайте также:  Предохранительные прививки против оспы разработал

Проникновение в клетку. На следующем этапе вирусу необходимо доставить внутрь клетки свой генетический материал. Некоторые вирусы также переносят внутрь клетки собственные белки, необходимые для её реализации (особенно это характерно для вирусов, содержащих негативные РНК). Различные вирусы для проникновения в клетку используют разные стратегии: например, пикорнавирусы впрыскивают свою РНК через плазматическую мембрану, а вирионыортомиксовирусов захватываются клеткой в ходе эндоцитоза и попадают в кислую среду лизосом, где происходит депротеинизация вирусной частицы, после чего РНК в комплексе с вирусными белками преодолевает лизосомальную мембрану и попадает в цитоплазму. Вирусы также различают по тому, где происходит их репликация: часть вирусов (например, те же пикорнавирусы) размножается в цитоплазме клетки, а часть (например, ортомиксовирусы) в еёядре. Процесс инфицирования вирусами клеток грибов и растений отличается от инфицирования клеток животных. Растения имеют прочную клеточную стенку, состоящую из целлюлозы, а грибы — из хитина, так что большинство вирусов могут проникнуть в них только после повреждения клеточной стенки [96] . Однако почти все вирусы растений (включая вирус табачной мозаики) могут перемещаться из клетки в клетку в форме одноцепочечных нуклеопротеиновых комплексов через плазмодесмы [97] . Бактерии, как и растения, имеют крепкую клеточную стенку, которую вирусу, чтобы попасть внутрь, приходится повредить. Но в связи с тем, что клеточная стенка бактерий намного тоньше таковой у растений, некоторые вирусы выработали механизм впрыскивания генома в бактериальную клетку через толщу клеточной стенки, при котором капсид остаётся снаружи [98] .

Лишение оболочек представляет собой процесс потери капсида. Это достигается при помощи вирусных ферментов или ферментов клетки-хозяина, а может быть и результатом простойдиссоциации. В конечном счёте вирусная геномная нуклеиновая кислота освобождается.

Репликация вирусов подразумевает, прежде всего, репликацию генома. Репликация вируса включает синтез мРНК ранних генов вируса (с исключениями для вирусов, содержащих положительную РНК), синтез вирусных белков, возможно, сборку сложных белков и репликацию вирусного генома, которая запускается после активации ранних или регуляторных генов. Вслед за этим может последовать (у комплексных вирусов с крупными геномами) ещё один или несколько кругов дополнительного синтеза мРНК: «поздняя» экспрессия генов приводит к синтезу структурных или вирионных белков.

Вслед за этим происходит самосборка вирусных частиц, позже происходят некоторые модификации белков. У вирусов, таких как ВИЧ, такая модификация (иногда называемая созреванием) происходит после выхода вируса из клетки-хозяина [99] .

Выход из клетки. Вирусы могут покинуть клетку после лизиса, процесса, в ходе которого клетка погибает из-за разрыва мембраны и клеточной стенки, если такая есть. Эта особенность есть у многих бактериальных и некоторых животных вирусов. Некоторые вирусы подвергаются лизогенному циклу, где вирусный геном включается путём генетической рекомбинации в специальное место хромосомы клетки-хозяйки. Тогда вирусный геном называется провирусом, или, в случае бактериофага, профагом [100] . Когда клетка делится, вирусный геном также удваивается. В пределах клетки вирус в основном не проявляет себя; однако в некоторый момент провирус или профаг может вызвать активацию вируса, который может вызвать лизис клеток-хозяев [101] .

Активно размножающийся вирус не всегда убивает клетку-хозяина. Оболочечные вирусы, в том числе ВИЧ, обычно отделяются от клетки путём отпочковывания. В ходе этого процесса вирус обзаводится своей оболочкой, которая представляет собой модифицированный фрагмент клеточной мембраны хозяина или другой внутренней мембраны [102] . Таким образом, клетка может продолжать жить и продуцировать вирус.

Дата добавления: 2014-10-31 ; Просмотров: 1563 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Микробиология возбудителя натуральной оспы. Таксономия и происхождение возбудителя натуральной оспы. Экология и естественная эпидемиология возбудителя натуральной оспы. Экология и естественная эпидемиология возбудителя оспы обезьян. Оспа коров. Восприимчивость к возбудителю натуральной оспы людей и животных. Восприимчивость к возбудителю оспы обезьян у животных. Иммунитет к поксвирусам. Устойчивость возбудителя натуральной оспы во внешней среде. Антивирусные препараты. Обнаружение генетически измененных штаммов ортопоксвирусов. Патогенез ортопоксвирусных инфекций. Клиническая и патологоанатомическая картина натуральной оспы у человека при естественном инфицировании. Клиническая и патологоанатомическая картина оспы обезьян у человека при естественном инфицировании. Клиническая картина и патоморфология натуральной оспы и оспы обезьян у животных при искусственном инфицировании. Клиническая картина натуральной оспы у людей при искусственном инфицировании. Диагностика искусственного поражения возбудителем натуральной оспы. Иммунопрофилактика натуральной оспы. Профилактика после экспонирования к ВНО и ВОО и лечение развившейся болезни.

Библиографическое описание. Супотницкий МВ. Натуральная оспа, оспа обезьян. В кн.: Супотницкий МВ. Биологическая война. Введение в эпидемиологию искусственных эпидемических процессов и биологических поражений. М.: «Кафедра», «Русская панорама»; 2013. С. 834–886.

Натуральная оспа (Variola major, Variola vera, Smallpox, Die Pocken, Blattern) — острая высококонтагиозная вирусная болезнь. В типичных случаях характеризуется общей интоксикацией, лихорадкой, высыпаниями на коже и слизистых оболочках, последовательно проходящими стадии пятна, пузырька, пустулы, корочки и рубца. Вызывается вирусом натуральной оспы (ВНО; Variola virus, VAR, VARV). По вирулентности для людей ВНО делится на два подвида: Variola major (летальность среди заболевших людей колеблется в пределах от 5 до 40 %); и Variola minor или алястрим (летальность 0,1-2 %) х . Вспышки малой оспы отмечались параллельно и независимо от таковых большой оспы. Люди, выживающие после натуральной оспы, могут частично или полностью терять зрение, и у них на коже остаются рубцы в местах бывших язв. ВНО относится к семейству Poxviridae, подсемейства Chordopoxviridae, рода Orthopoxvirus. Других природных хозяев, кроме человека, для ВНО не установлено. Поэтому при естественном заражении наиболее вероятным источником вируса для человека является другой человек, больной натуральной оспой. До конца 1950-х гг. военными специалистами ВНО не рассматривался в качестве агента БО. Т. Розбери, Э. Кабат (1955) в своем докладе, представленном Национальному исследовательскому совету США в 1942 г., писали, что ВНО непригоден для ведения войны из-за всеобщей и регулярно проводимой вакцинации войск и населения. Кроме того, в эти годы не существовало технологий получения ВНО в количествах, достаточных для боевого применения. Основным способом получения ВНО было выращивание на хорионаллантоисной оболочке (КАО) развивающихся куриных эмбрионов. Способ позволял получать чистую культуру вируса и поддерживать его в лабораторных условиях, но не более. Только после появления в 1956 г. технологий культивирования ВНО в культурах клеток, его стали упоминать в специальной литературе в качестве агента БО, способного «пробить» высокой дозой иммунитет у человека, созданный вакцинацией (Ротшильд А., 1966). С 1980 г. массовая вакцинация против натуральной оспы отменена и в настоящее время восприимчивость населения к ВНО повсеместная.

Российские санитарно-эпидемиологические правила СП 1.3.2322-08 относят ВНО к I группе патогенности. По степени важности для национальной безопасности США возбудитель натуральной оспы относится к биологическим поражающим агентам категории А (см. табл. 2.2). Военными специалистами он рассматривается в качестве потенциального поражающего агента БО из-за низкой инфицирующей дозы для людей; устойчивости к высушиванию и длительному хранению, и при переводе в аэрозоль. Уже само слово «оспа» обладает большим психологическим эффектом. Упоминание в СМИ о появлении натуральной оспы в каком-то населенном пункте способно вызвать панику среди его населения и социальные эксцессы.

В настоящее время натуральная оспа считается ликвидированной болезнью, официальные коллекции ВНО находятся только в двух лабораториях: Centers for Disease Control and Prevention (CDC; Атланта, США) и в Федеральном бюджетном учреждении науки «Государственный научный центр вирусологии и биотехнологии «Вектор»» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Новосибирск, Россия) 1 .

Оспа обезьян — зооноз, природно-очагововая вирусная болезнь, клинически почти не отличается от натуральной оспы. Характеризуется лихорадкой, общей интоксикацией и появлением экзантемы, сходной с высыпаниями при натуральной оспе. Вызывается вирусом оспы обезьян (BOO; Monkeypox virus, MPVMPXV). Известны два геномных варианта этого вируса. ВОО является близкородственным ВНО и вирусу осповакцины (BOB; Vaccinia virus, W, VACV), но его эволюционная история не связана ни с ВНО, ни с BOB (Douglass N., Dumbell К., 1992). Первичный резервуар ВОО не установлен (Hughes A. L. et al., 2010).

Впервые ВОО выделен в 1958 г. в Копенгагене от азиатских обезьян, содержащихся в зоопарке, и поначалу считался лабораторной редкостью. В 1970 г. было установлено, что ВОО вызывает в тропической Африке у людей болезнь, похожую на натуральную оспу. На фоне побед над ВНО, эти случаи казались досадным недоразумением. Считалось, что оспа обезьян малоконтагиозна и большой опасности не представляет. Однако позднее, вопреки всем своим прежним заявлениям о прекращении глобальной иммунизации против оспы, ВОЗ возобновила иммунизацию населения тропических регионов Африки и продолжала ее до середины 1990-х гг., когда из-за резко возросшего числа ВИЧ-инфицированных иммунизация населения живыми вакцинами стала невозможна в принципе (Cohen J., 1997). В 1990-х гг. в регионе активизировалась оспа обезьян. В небольшой заирской деревушке в районе Котако-Комба оспой обезьян заболели 42 жителя из 346, трое из них погибли. Установлен больной, ставший источником каскада передач вируса 8 жителям, что уже сопоставимо с контаги-озностью натуральной оспы. Все заболевшие ранее не были иммунизированы оспенной вакциной (Mukinda V. et al., 1997). Но и после этого случая оспа обезьян не рассматривалась как потенциальная угроза за пределами Африки. Это мнение изменилось в 2003 г., когда ВОО был завезен в США вместе с дикими африканскими грызунами и распространился среди людей в 11 штатах, вызвав 82 случая болезни (Chastel С., 2009). Естественное инфицирование ВОО в России возможно в результате контакта с контрабанды) завезенными из тропических лесов Центральной и Западной Африки ди-коживущими белками и обезьянами.

С целью поражения людей наиболее вероятно применение ВНО и ВОО посредством использования линейных и многоточечных источников аэрозоля, и диверсионными (террористическими) методами. Террористами ВОО может использоваться для имитации вспышек натуральной оспы. Клинику, напоминающую натуральную оспу, у иммунодефицитных людей может вызвать вирус оспы коров.

Микробиология возбудителя натуральной оспы. ВНО размножается в развивающихся куриных эмбрионах при различных путях введения: на ХАО, в амнион, желточный мешок и аллантоисную полость. Использование куриных эмбрионов позволило впервые выделить вирус оспы в чистой культуре и поддерживать его в лабораторных условиях. В результате заражения ВНО на ХАО образуются характерные белые точечные, куполообразные, резко отграниченные поражения (рис. 3.87).

Рис. 3.87. Внешний вид оспенных пустул (pocks) на поверхности хорионаллантоисной оболочки, образованных различными видами Orthopoxvirus. Пустулы ВОО фотографировали после инкубирования в течение трех сут при температуре 35 °С; остальные — после инкубирования в течение трех сут при 36 °С. A. Variola major virus. Б. Vaccinia virus (штамм Листера). В. Monkeypox virus (штамм Копенгаген). Г. Cowpox virus (штамм Brighton). Размер пустул, образованных ВНО на ХАО, находится в пределах 0,3-06 мм. По F. Fenner et al. (1988)

Оптимальная температура для размножения ВНО в куриных зародышах 35 °С. При температуре 37 °С размножение вируса замедляется. Предельная температура развития на ХАО для Variola major — 38,5 °С; для Variola minor — 37,5 °С. При этом уменьшается размер и плотность оспин. Большинство штаммов ВНО не вызывает гибели куриных зародышей при первичном заражении, однако при последовательных пассажах происходит адаптация вируса, проявляющаяся в приобретении им патогенности для зародыша и изменении характера поражений.

ВНО размножается в тканевых культурах, вызывая развитие цитопатического эффекта. Характер цитопатического действия вируса алястрима не отличается от такового у Variola major , однако его накопление в культуре происходит медленнее. К действию вируса чувствительны культуры различных тканей человека и животных. При этом существенного значения не имеют возраст и восприимчивость к действию вируса вида животного, от которого получена ткань, характер культуры (первичная или перевиваемая), особенности ткани (нормальная или злокачественная) и способ ее приготовления (эксплантат, однослойная или взвешенная культура). Отличается лишь характер цитопатического действия: в первичных культурах вирус вызывает с самого начала деструктивные изменения, а в перевиваемых — поражения начинаются пролиферацией ткани, и только в последующем отмечается деструкция клеток.

Для большинства однослойных культур развитие цитопатического действия характеризуется появлением в неизмененном монослое очагов, в которых клетки разобщены, округлены и сильно преломляют свет. Границы клеток четко очерчены, часть клеток сильно увеличена в размере. С течением времени размер и количество таких очагов увеличиваются и в дегенеративный процесс вовлекается весь монослой. Процесс заканчивается полной деструкцией клеточного пласта и отпадением клеток от стенок пробирки. В зараженных клетках образуются цитоплазматические включения — тельца Гварниери. Тельца Гварниери формируются уже через несколько часов после заражения. В дальнейшем их количество увеличивается (как по числу включений в одной клетке, так и по количеству клеток, содержащих включения). Скорость появления включений в различных культурах клеток варьирует. Максимальное накопление вируса отмечается обычно к 72-96 ч. ВНО способен образовывать бляшки (негативные колонии) в культуре ткани с применением техники агарового покрытия и без него. Бляшки вируса в культуре клеток без агарового покрытия образуются через 72-96 ч после заражения и имеют значительно меньшие, чем у вируса вакцины, размеры (до 1 мм). В культуре клеток под агаровым покрытием бляшки вируса оспы выявляются не ранее 5-х сут с момента инфицирования культуры. Размер их не превышает 2 мм.

В культурах клеток, зараженных Variola major и Variola minor , наблюдается феномен гемадсорбции — агглютинация эритроцитов отдельных видов животных суспензиями ВНО. Наиболее вирулентные для людей штаммы ВНО (летальность заболевших 14-44 %) циркулировали в Азии. Летальность среди людей, заразившихся африканскими штаммами ВНО, составляла 5-15 %. Для штаммов ВНО, выделенных от людей из Ближневосточного региона, характерна низкая патогенность для куриных эмбрионов при термоустойчивости, практически равной таковой референс-штамму Harvey. По способности накапливаться в печени куриных эмбрионов они занимают промежуточное положение между азиатскими и африканскими штаммами. Штаммы ВНО, циркулировавшие в Бразилии, представляли собой типичные штаммы аляст-рима. Объяснения этим феноменам найдено не было (Маренникова С.С., Щелкунов С. Н., 1998).

В отличие от большинства ДНК-содержащих вирусов животных, жизненный цикл поксвирусов проходит в цитоплазме клетки в значительной степени автономно от ее ядра. Для этого они, как и бактерии (!), располагают своими ферментативными системами синтеза РНК и ДНК (рис. 3.88 и 3.89).

Рис. 3.88. Вирион ортопоксвируса. А. Вирион в фагосоме. 1 — мембрана фагосомы; 2 — вирионы; 3 — оболочка вириона; 4 — оболочка нуклеотида; 5 — нуклеотид; 6 — боковое тело. По П. Н. Бургасову, Г. П. Николаевскому (1972). Б. Структура внеклеточного вириона ортопоксвирусов (на примере вируса вакцины). 1 — сердцевина; 2 — мембрана сердцевины; 3 — боковые тела; 4 — поверхностная мембрана; 5 — липопротеидная оболочка; 6 — трубчатые структуры поверхностной мембраны. По С. С. Маренниковой и С.Н. Щелкунову (1998)

Вирионы ортопоксвирусов (см. рис. 3.89) адсорбируются на клетке (1) и сливаются с плазматической мембраной клетки, высвобождая сердцевины в цитоплазму (2). Сердцевины синтезируют ранние мРНК, с которых транслируются различные белки, включая факторы роста, молекулы защиты от иммунной системы, ферменты и факторы для репликации ДНК и транскрипции промежуточных генов (3). Происходит «раздевание» сердцевины (4), и вирусная ДНК реплицируется, формируя конкатемер-ные молекулы (5). Промежуточные гены транскрибируются на дочерних молекулах ДНК и с этих мРНК транслируются факторы поздней транскрипции (6). Затем транскрибируются поздние гены. С их мРНК транслируются вирионные структурные белки, ферменты и факторы ранней транскрипции (7). Сборка вирионов начинается с образования дискретных мембранных структур (8). Конкатемерные промежуточные формы вирусной ДНК разделяются на единичные геномы и упаковываются в незрелые вирионы (9).

Рис. 3.89. Жизненный цикл осповирусов (на примере вируса вакцины). Вирионы содержат двуцепочечную геномную ДНК, ферменты, факторы транскрипции. По С. С. Маренниковой и С. Н. Щелкунову (1998)

Созревание приводит к образованию внутриклеточных зрелых вирионов (10). Эти вирионы покрываются модифицированными мембранами аппарата Еольд-жи и перемещаются к периферии клетки (11). Слияние таких вирионов с плазматической мембраной завершается высвобождением внеклеточного оболочечного вируса (12). Хотя размножение вируса происходит полностью в цитоплазме, факторы ядра могут быть вовлечены в процессы транскрипции генов и сборки вирионов (Марен-никова С. С., Щелкунов С. Н., 1998).

Инфекционные частицы поксвирусов содержат в своем составе полную ферментативную систему транскрипции, способную синтезировать функциональную мРНК в полиаденилированной, кэпированной и метилированной форме. Это позволяет ВНО:

1) самостоятельно осуществлять эффективную защиту от ранних специфических реакций на инфекцию и противодействовать развивающимся позже специфическим реакциям;

2) размножаться до высокого уровня, обеспечивающего быструю передачу другому хозяину.

Таксономия и происхождение возбудителя натуральной оспы. Семейство поксвирусов относится к монофилетической группе крупных ДНК-вирусов, размножающихся в цитоплазме клетки (NCLDVs — nucleocytoplasmic large DNA viruses). В эту же группу входят семейства Ascoviridae, Asfarviridae, Iridoviridae, Mimiviridae, Phycodnaviridae и Marseillevirus (рис. 3.90).

Рис. 3.90. Филогения крупных ДНК-вирусов, размножающихся в цитоплазме клетки. W — Vaccinia virus ; FPV — Fowlpox vius; MCV — Molluscum contagiosum vims; MSV— Melanoplus sanguinipes entomopoxvirus; AM Y — Amsacta moorei entomopoxvirus; HcDNAV— Heterocapsa circularisquama DNA virus. По M. G. Fischera et al. (2010)

Семейство поксвирусов подразделяется на подсемейства энтомопоксвирусов (EnPV) и хордопоксвирусов (ChPV) (Entomopoxvirinae и Chordopoxvirinae), инфицирующих насекомых и хордовых животных соответственно. ChPV дополнительно подразделяются на 8 родов (Avipoxvirus, Molluscipoxvirus, Orthopoxvirus, Capripoxvirus, Suipoxvirus, Leporipoxvirus, Yatapoxvirus и Parapoxvirus), тогда как EnPV подразделяются на 3 рода (А, В и С). Организация генома поксвирусов, их репликация, круг хозяев и патогенез хорошо изучены. Краткая характеристика геномных последовательностей отдельных штаммов ортопоксвирусов приведена в табл. 3.25.

Таблица 3.25. Краткая характеристика геномных последовательностей поксвирусов*

Хордопоксвирусы, род Orthopoxvirus (ОРУ)

Вирус вакцины, Vaccinia virus (BOB, W)

Вирус натуральной оспы, Variola virus (ВНО, VAR)

Вирус оспы обезьян, Monkeypox vius (BOO, MPV)

Вирус эктромелии, Ectromelia virus (ЕСТ)

Вирус оспы верблюдов, Camelpox virus (CMPV)

Вирус коровьей оспы, Cowpox virus (CPV) reporipoxvirus

Вирус миксомы, Myxoma virus (MYX)

Вирус фибромы Шоупа, Shope fibroma virus (SFV)

Вирус оспы птиц, Fowlpox virus (FPV)

Вирус узелковой сыпи, Lumpy skin disease virus (FSDV)

Вирус оспы коз, Goat pox virus (GTPV)

Вирус овечьей оспы, Sheeppox virus (SPPV)

Вирус оспы свиней, Swinepox virus (SWPV)

Вирус контагиозного моллюска, Molluscum contagiosum virus (MCV)

Вирус Яба-подобного заболевания, Yaba-like disease virus (YLDV)

Энтомопоксвирусы, Entomopoxvirus В

Melanoplus sanguinipes (EnPVm)

Выполненное G. Gubser et al. (2004) сравнение геномов 26 поксвирусов показало, что организация генома вирусов, входящих в подсемейство хордопоксвирусов, консервативна. Их центральная область кодирует почти идентичные белки для синтеза РНК и ДНК, белкового процессинга, сборки вирионов и структурных белков. Гены, кодируемые терминальными участками генома вирусов этого же подсемейства, более дивергентны у различных родов, у видов внутри рода и даже у штаммов одного и того же вида. Многие из этих генов кодируют белки, определяющие круг хозяев вируса, его вирулентность или взаимодействие с иммунной системой хозяина. Несмотря на выявленное сходство геномов ChPV, их длина варьирует от примерно 144 т. п. о. у вируса YLDV до 289 т. п. о. у вируса оспы птиц (FPV), а содержание А + Т варьирует от 75 % у рода Capripoxvirus до 36 % у рода Parapoxvirus (см. табл. 3.25). Геномы энто-мопоксвирусов, наоборот, более дивергентны и по расположению генов отличаются не только от CRPV, но и между различными родами EnPV.

Сравнение секвенированных поксвирусов позволило идентифицировать 90 генов, которые консервативны у всех ChPV; при включении двух EnPV это число сокращено до 49. У ChPV все 90 консервативных генов расположены в центральной области генома, содержащей 100 т. п. о.

Построенное G. Gubser etal. (2004) филогенетическое древо показывает, что ChPV составляют четыре группы вирусов. Первые две группы относятся к Molluscipox и Avipox соответственно. FPV (род Avipoxvirus) является наиболее дивергентным вирусом среди ChPV. За ним следует MCV (род Molluscipoxvirus). Авипоксвирусы являются единственными ChPV, которые инфицируют птиц, a MCV считается патогеном человека; в результате эволюции оба вируса приобрели уникальные иммуномодуляторные белки, позволяющие им противодействовать иммунной системе их хозяев.

Третья , самая большая, группа ChPV, включает роды Yatapoxvirus (YLDV), Capripoxvirus (LSDV), Suipoxvirus (SWPV) и Leporipoxvirus (SFVи MYX). Внутри этой группы SFV и MYX, которые тесно связаны друг с другом, расположены рядом с SWPV и LSDV, в то время как YLDV является более дивергентным. Геномы всех этих вирусов относительно высококонсервативны по составу генов, расположению генов и идентичности аминокислот. SWPV и LSDV произошли от общего предка.

Четвертая группа ChPV— это род ортопоксвирусов (OPV). У них более крупный геном, чем у вирусов других групп ChPV. Наиболее изученными считаются вирус вакцины (W-СОР) и вирус натуральной оспы (VAR-BSH).

G. Gubser et al. (2004) установили близкое родство CMPVи ВНО. Три штамма ВНО составляют одну группу, также как и два штамма CMPV. Группы ВНО и CMPV более тесно связаны друг с другом, чем с любым другим видом OPV. OPV отделились от общего предка позже, чем лепорипоксвирусы. При сравнении различных видов OPV установлено, что наименьшее генетическое различие существует между штаммами CMPV и ВНО, а наибольшее — между ГСТ и ВНО. Интересной особенностью геномов OPV является наличие большого количества генов, интактных у одного вируса, но фрагментированных у другого. Объяснением может служить тот факт, что некоторые OPV являются относительно новыми патогенами для их хозяев и в эволюционном масштабе времени произошли от предкового вируса сравнительно недавно, при этом их дивергенция сопровождалась специализацией паразитизма и, как следствие, «выключением» генов, не нужных в новом хозяине. На рис. 3.91 показано филогенетическое древо семейства поксвирусов, основанное на анализе сцепленных (concatenated) аминокислотных последовательностей 29 консервативных ортологичных белков.

Рис. 3.91. Филогенетическое древо поксвирусов. Таксономически наиболее близкими к ВНО являются не представляющие опасности для людей ортопоксвирусы, вызывающие оспенные заболевания у змей и верблюдов. Эволюционная история патогенного для людей ВОО не связана ни с ВНО, ни с ВОВ. По A. L. Hughes et al. (2010)

Объяснению происхождения ВНО мешает представление о натуральной оспе как о строгом антропонозе. Поэтому данные, полученные путем молекулярно-биологических исследований генома вируса, обычно исследователи пытаются увязать с археологическими данными или упоминаниями в письменных источниках о болезнях, которые они считают натуральной оспой (рис. 3.92).

Читайте также:  Вирус ветряной оспы сообщение

Рис. 3.92. Мумия фараона Рамзеса V, умершего в 1157 г. до н. э. На коже видны следы оспенных пустул. Мумия считается достоверным археологическим подтверждением существования натуральной оспы в Древнем Египте, однако далее в глубь времени фантазия сторонников антропонозного происхождения ВНО не идет. Рисунок из книги F. Fenner et al. (1988)

В результате сопоставления столь разнородных фактов возникло противоречие в оценке частоты мутации на пару оснований/цикл репликации (mutations per base pairs per replication). Гели в первом случае (частота мутации для ДНК-вирусов оценивается в пределах от 2х10 -8 до 7х10 -7 ) исследователи предполагают, что дивергенция ВНО и Taterapox virus (инфицирует змей и грызунов в Западной Африке) от неустановленного предка произошла не ранее чем 50 тыс. лет назад; то во втором случае (предполагается частота мутации 4х 10 _6 , т. е. почти как у ВИЧ) — их эволюционная история значительно короче — 3-4 тыс. лет (Hughes A. L. et al., 2010) 2 . Но такая частота мутаций в жизненном цикле ДНК-вирусов невозможна, так как репликация их ДНК сопровождается проверочным считыванием и пострепликационной репарацией. При репликации РНК-вирусов, корректировок в синтезе РНК не происходит. Молекулы вирусной РНК реплицируются через ассиметричную транскрипцию от одной цепи, исключающую большинство корректирующих механизмов, характерных для репликации молекул ДНК ( по репликации РНК-вирусов см. работу Holland S. et al., 1982).

Разрешение данного противоречия целесообразно искать в эволюционной истории всей монофилетической группы крупных ДНК-вирусов, рассматривая историю поксвирусов только как ее частный случай и используя аналогии с семействами, чьи первичные хозяева установлены.

Семейство Mimiviridae и семейство Poxviridae — дивергирующие ветви общего для них неизвестного предка (см. рис. 3.90). Мимивирус впервые обнаружен в амебах Асапthamoebapolyphaga. Диаметр зрелых частиц достигает 400 нм (La Scola В. et al., 2003).

Его другое название — мимивирус Acanthamoeba polyphaga (Acanthamoeba polyphaga mimivirus; АРМУ). Размер вириона мимивируса сравним с размером микобактерии. Геном АРМУ вмещает 1,2 млн нуклеотидов (т. е. почти в 6 раз больше генома самого крупного хордопоксви-руса — FPV) и кодирует не менее 911 белков (Benarroch D. et al., 2006). Е. Ghigo et al. (2008) впервые продемонстрировали, что мимивирус в условиях in vitro путем классического фагоцитоза (т. е. так же как и ортопоксвирусы) инфицирует макрофаги мышей, выживает в них и успешно размножается. ДНК-топоизомеразы мимивирусов (IA, IB и IIA) сходны с аналогичными ферментами ортопоксвирусов (Benarroch D. et al., 2006). Репликация ортопоксвирусов и мимивирусов происходит аналогичным образом. Вирусы обоих семейств используют убиквитин-протеосомную систему (Teale A. et al., 2009). Другие примеры сходства мимивирусов и ортопоксвирусов можно найти в работе М. G. Fischera et al. (2010). Поэтому поиски первичных резервуаров поксвирусов целесообразно проводить там же, где их нашли для мимивирусов, т. е. среди простейших, а эволюцию поксвирусов рассматривать как дегенеративную, т. е. сопровождающуюся утратой генов вследствие их большей специализации к новым хозяевам. Более подробно о роли утраты генов в эволюции ортопоксвирусов, см. в работе R. С. Hendrickson et al. (2010). Поиск первичного резервуара вируса, предкового для ВНО и Taterapox virus и, возможно, самого ВНО, целесообразно осуществить в регионах, где произошла их дивергенция (рис. 3.93).

Молекулярная эпидемиология ВНО хорошо изучена. С помощью метода изучения RFLP могут дифференцироваться ВНО, ВОВ, ВОС, CMPV, CPV Taterapox virus и другие ортопоксвирусы и устанавливаться их географическое происхождение (Loparev V. et al., 2001). Определены полные геномные последовательности большинства географических изолятов ВНО. Они объединены в базу данных для поксвирусов с открытым доступом: www.poxvirus.org (LeDuc J. М. et al., 2002).

Экология и естественная эпидемиология возбудителя натуральной оспы. Экология ВНО объявлена хорошо изученной. Сегодня принято считать, что ВНО может поддерживаться только среди людей, используя механизм воздушно-капельной передачи (см. Fenner F. et al., 1988). В качестве примера высокой контагиозности ВНО в научной литературе приводятся отдельные вспышки, которые охватывают десятки человек (см., например, работы Бургасова П. Н., Николаевского Г. П., 1972; Серенко А. Ф., 1962). Однако когда анализируются вспышки в целом и за длительный период времени, то выясняется, что способность ВНО передаваться от человека к человеку в имму-нокомпетентных популяциях ограничена. По данным V. Bhatnagar et al. (2006), обобщивших статистическую информацию по 51 вспышке «завозной» натуральной оспы, зарегистрированной в Европе и Северной Америке в период после 1945 г., в среднем каждая такая вспышка ограничивалась четырьмя случаями болезни с одним летальным исходом. Количество передач (генераций) ВНО от заболевшего человека к здоровому, редко превышало 3; а 30 % заносных вспышек вообще не сопровождалось передачами ВНО от человека к человеку. Такую незначительную способность ВНО к быстрому распространению в популяциях людей нельзя объяснить только предварительными массовыми вакцинациями, тем более что достаточно примеров массовых вспышек в вакцинированных популяциях людей (например, московская вспышка натуральной оспы 1959-1960 гг.). Вспышка натуральной оспы среди невакцинирован-ного населения Abakaliki (Нигерия) в 1967 г. ограничилась всего 31 случаем болезни (Eichner М., Dietz К., 2003). В свете этих данных невозможно понять, каким образом жестокая пандемия натуральной оспы 1870-1874 гг. вспыхнула практически одновременно на нескольких континентах (Бразоль JL Е., 1875), если не предполагать наличия первичного природного резервуара для ВНО, способного синхронно активизироваться под воздействием каких-то еще неизвестных факторов. В противоречие с распространенной точкой зрения на природный резервуар ВНО входят и данные, полученные при молекулярно-биологических исследовании генома ВНО (см. выше), свидетельствующие о циркуляции этого вируса еще «на заре» истории человечества; а также странные «родственные связи» самого ВНО. К его «ближайшим родственникам» относятся вирусы, вызывающие болезнь у змей и верблюдов, и при этом не опасные для людей (см. рис. 3.90), что говорит о случайном характере дивергенции предкового вируса и патогенности ВНО для людей. Поэтому в представлениях об экологии ВНО последнее слова еще не сказано.

Естественная эпидемиология натуральной оспы предполагает, что наиболее вероятным источником возбудителя инфекции для человека является человек. Инкубационный период болезни — 7-17 сут. Больной натуральной оспой заразен в течение всего периода заболевания, начиная с момента возникновения лихорадки, а иногда с последнего дня инкубационного периода. Наибольшая заразительность больных приходится на период вскрытия оспенных элементов на слизистой оболочке рта и зева, соответствующий 6-9 сут болезни. Вместе с тем, по данным Комитета экспертов ВОЗ по оспе, многие больные наиболее заразны на 3-4 сут болезни, т. е. к моменту появления высыпаний. Заражение может произойти от больного любой формой оспы, в том числе и оспы без сыпи. Наибольшее эпидемиологическое значение имеют тяжелые формы болезни с обильными высыпаниями. Но самыми опасными в эпидемиологическом отношении являются именно нетипичные, вариолоидные формы заболеваний оспой у привитых. Больные, заболевание у которых не диагностируется, остаются неизолированными и могут служить источником инфекции для окружающих. Они представляют особенную опасность, если среди контактирующих с этими больными оказываются не иммунные лица. В подобных случаях эпидемический процесс может затянуться на продолжительное время.

При абортивных формах болезни (вариолоид, оспа без сыпи и др.) продолжительность инфекционного периода невелика и может измеряться несколькими часами. Несмотря на то что в корках больных оспой содержатся большие количества возбудителя, наибольшее значение в распространении инфекции имеет вирус из дыхательного тракта. Основной путь передачи ВНО — воздушно-капельный: рассеивание вируса с капельками слизи и слюны при разговоре, кашле и чиханье. Меньшее значение имеет воздушно-пылевой путь: рассеивание вируса с частицами пыли, встряхивание инфицированного белья, одежды и т. д. Сохранению вируса в пылевых частицах способствует его высокая устойчивость во внешней среде. Вследствие этой особенности возбудителя, зараженные вирусом оспы вещи и предметы, могут служить источником заражения даже при их пересылке на далекие расстояния. Примером подобного рода является несколько вспышек оспы в Англии, возникших в результате заражения через инфицированный хлопок, полученный из ОАР и Индии.

Контактный путь передачи ВНО, хотя иногда и встречается, большого практического значения не имеет. Трупы погибших от оспы людей могут служить источником заражения. Описаны случаи возникновения как генерализованной оспы, так и оспы, протекающей по типу variola inoculata, у лиц, принимавших участие в аутопсии и обработке материалов, взятых от трупа. Распространение натуральной оспы может осуществляться насекомыми, которые выполняют роль механического переносчика ВНО.

Крупные вспышки завозной натуральной оспы происходят при следующих обстоятельствах: во-первых, формируется массивный первичный очаг, длительное время остающийся нераспознанным; во-вторых, последовательно формируются несколько вторичных эпидемических очагов, в том числе в крупных медицинских учреждениях, куда больные натуральной оспой поступают под ошибочными диагнозами. ВНО начинает распространяться как внутрибольничная инфекция, среди компактно размещенных по палатам больных людей, и от них переходить на посещающих их родственников и врачей. Например, во время московской вспышки 1959-1960 гг. сначала сформировался семейный очаг в семье художника К., вернувшегося из Индии, затем очаг в Московской клинической больнице им. С. П. Боткина среди больных, медицинского и обслуживающего персонала, контактировавших с больным художником. Эти очаги способствовали формированию третьего, городского, очага оспы в Москве. Около 1600 сотрудников больницы в течение 3 нед контактировали с населением города; в-третьих, очаги формируются среди населения, неиммунного в отношении ВНО. Как правило, крупные вспышки возможны в городах, где вакцинация и ревакцинация против натуральной оспы либо вообще не проводилась, либо проводилась небрежно и непоследовательно.

Самая крупная вспышка завозной натуральной оспы (99 заболевших) в послевоенное время имела место в 1963 г. на территории Польской Народной Республики (ПНР). Первым заболевшим оспой в конце мая 1963 г. был гражданин, прибывший из Индии во Вроцлав. Местные врачи поставили ему диагноз малярии. Этот диагноз позднее был изменен на необычно протекающую ветряную оспу, поскольку как у приехавшего, так и у контактировавших с ним лиц появились характерные высыпания, сопровождавшиеся тяжелым клиническим течением, закончившимся в двух случаях смертью больных. Только через 48 сут после появления первого больного, лабораторными исследованиями был установлен диагноз натуральной оспы, а 3 сут спустя начали проводиться необходимые противоэпидемические мероприятия. За время этой эпидемической вспышки натуральной оспы во Вроцлаве заболело 79 человек, из них 6 человек умерли. Инфекция была завезена также в провинцию Вроцлав, где заболели 11 человек, в провинцию Ополе (заболели 4 человека), в провинцию Лодзь (заболели 4 человека, один из них умер), и один больной был зарегистрирован в Гданьске. Более четверти заболевших в описываемую вспышку натуральной оспы составили медицинские работники и лица из обслуживающего персонала больниц. Среди заболевших было 5 врачей, 8 медицинских сестер, 5 палатных нянь, студентка-медик и 7 служащих больницы. Из 7 умерших от оспы, 5 человек также были медицинскими работниками (один врач, 2 медицинские сестры и 2 няни). За несколько недель в районах распространения натуральной оспы было привито более 8 млн человек. Выборочной проверкой было установлено, что 81 % привитых положительно реагировали на введение вакцины. Это свидетельствовало об отсутствии у основной массы населения специфического иммунитета, который был утрачен, по-видимому, со временем в силу нарушения системы ревакцинации против натуральной оспы.

Ниже, по работам А. Ф. Серенко (1962) и С. Б. Дубровинского (1964), как пример естественного течения вспышки натуральной оспы в большом городе, привожу краткое описание московской вспышки 1959-1960 гг.

22/XII. 1959 г. из Дели в Москву на самолете вылетел художник К 3 . По прибытии в Москву 23/XII он почувствовал недомогание и вызвал врача. 24/XII больной К. высказал врачу жалобы на слабость, боли в животе, головную боль, отсутствие аппетита. Объективно у больного температура 38-39 °С, язык обложен, в зеве и легких чисто, тоны сердца глухие, пульс 106/мин, болевые точки в области желчного пузыря.

Был установлен предположительный диагноз гриппа, назначен постельный режим. 25/XII при повторном осмотре температура 39,1 °С, язык обложен, живот не напряжен, в зеве чисто, пальпируется печень и селезенка, пульс 96/мин. Предположительный диагноз: риккетсиоз? аппендицит?

26/XII приглашен хирург, который отверг диагноз аппендицита. У больного на животе и груди крупнопапулезная сыпь, положительный симптом Кончаловского. Высказано подозрение на сыпной тиф, но больной не госпитализирован, так как квартирные условия были вполне удовлетворительными.

27/XII у больного температура 37,8 °С, лицо красное, отечное, кровоизлияние в склере, отхаркивает кровь, АД 100/80 мм рт. ст., тоны сердца глухие, пульс 92/мин. Больного осмотрел врач-инфекционист, который остановился на диагнозе токсического гриппа с медикаментозной сыпью. Больной госпитализирован в 13-е (инфекционное) отделение Московской городской больницы им. С. П. Боткина. В дальнейшем клиническая картина заболевания приводится согласно записям в истории болезни.

Лицо одутловатое, гиперемировано, часть спины синюшняя. На верхних конечностях, груди и животе обильные пятнисто-папулезные полиморфные высыпания, в правой и левой подмышечных впадинах имеются элементы пузырькового характера с гнойным содержимым. Такие же высыпания и на внутренних поверхностях верхних конечностей; на бедрах мелкие пятнисто-папулезные высыпания. Слизистая оболочка зева гиперемирована, сочная. Язык сухой, обложен. На высоте вдоха пальпируется край печени. Сплошное кровоизлияние в склере, конъюнктивит. Предположительный диагноз: лекарственная сыпь.

В ночь на 28/XII больной отхаркивал слизистую мокроту с примесью алой крови, после приема преднизолона была рвота. 28/XII общее состояние больного тяжелое. Яркая, разлитая, интенсивная гиперемия кожи. Кожа лица и верхней половины туловища одутловатая, при пальпации как бы отечна. В паховых областях отдельные геморрагии, в нижней трети правого бедра с наружной стороны имеется кровоподтек величиной с детскую ладонь. Живот мягкий, безболезненный при исследовании. Держится резкий отек и набухание век, из-за резкого отека конъюнктиву не видно.

Клинически впечатление острого аллергического дерматита с выраженными явлениями капилляротоксикоза. На основании анамнеза (больной 22,23,24/XII принимал л евомицетин, стрептомицин, биомицин, синтомицин) консультантом также подтверждается этот диагноз.

28/XII присоединились явления геморрагического нефрита. Поражен весь кожный покров, слизистая оболочка рта и конъюнктива глаз: на общем эритематозном фоне характера эритродермии множественные геморрагические экстравазаты различной величины и оттенков до синего цвета. На слизистой оболочке языка, щек и неба точечные белые налеты — «молочница», местами сливающаяся и образующая на небе пленку. Ощущение жжения в глазах и кожных покровах. Консультация профессора. Диагноз: тяжелая токсико-аллергическая реакция на антибиотики, прогноз сомнителен.

29/XII в 12 ч консультация отоларинголога, стоматолога, терапевта, гематолога, окулиста, в 18 ч 30 мин состояние больного крайне тяжелое: выраженная гипоксия, повышенная кровоточивость, пульс едва прощупывается, кожные покровы синюшно-серые. В 23 ч 29/XII больной К. умер. 30/XII было произведено патологоанатомическое вскрытие. По заключению патологоанатома основным заболеванием у больного К. являлась геморрагическая алейкия, на фоне которой развился некротический ларингит, фарингит, эзофагит и колибациллярный сепсис.

Смерть больного наступила от резкой общей интоксикации, обусловленной сепсисом и чрезвычайно обширными множественными кровоизлияниями.

31/XII труп К. был кремирован, проведена дезинфекция помещений, в которых находился больной К., личные вещи были сожжены.

На вскрытии патологоанатомы, не отрицая диагноза токсического капилляротоксикоза, заподозрили на основании обнаружения биополярных палочек токсическую чуму. 31 /XII на основании дополнительных лабораторных исследований диагноз токсической чумы был отменен.

Позднее было установлено, что больной К. за 2 недели до выезда в Дели «был вакцинирован против оспы, но вакцинальной реакции у него не было отмечено, ранее прививался против оспы только в детстве».

Во время нахождения больного К. дома в Москве с 23 по 27/XII и позднее в больнице с 27 по 29/XII с ним контактировали члены семьи, друзья и медицинский персонал больницы им. С. П. Боткина.

Первые случаи заболеваний натуральной оспой в Москве зарегистрированы с 11 по 14/11960 г. Таким образом, к 14/1, т. е. через 16 сут после смерти К., было установлено, что первый случай натуральной оспы был пропущен. Ретроспективно у больного К. был установлен дигноз purpura variolosa. Пути распространения и формирования очагов натуральной оспы в Москве в 1959—1960 гг. показаны на рис. 3.94.

Рис. 3.94. Пути распространения и формирования очагов натуральной оспы в Москве в 1959—1960 гг. В результате формирования крупного очага натуральной оспы в семье художника К. (5 человек) сформировался очаг в московском отделении Союза художников — от сотрудника Союза художников, в Химико-технологическом институте им. Д. И. Менделеева — от дочери художника, в Проектном институте «Теплоприбор» — от родственника художника, в пошивочном ателье — от близких родственников художника. Кроме того, в семье страхового агента сформировался самостоятельный очаг натуральной оспы, а позднее 24/1 был обнаружен очаг в Сандуновских банях. Оба очага сформировались в результате контакта с членами семьи художника. Наряду с этими очагами самостоятельно развивался мощный очаг в Московской клинической больнице им. С. П. Боткина. Около 1600 сотрудников больницы в течение 3-х недель контактировали с населением города. По А. Ф. Серенко (1962)

Первыми выявленными заболевшими натуральной оспой в результате контакта с больным К. были: его знакомая Н., посещавшая К. после возвращения из Дели, и врач-отоларинголог Т., посещавший больного К. 27 и 29/XII 1959 г. Больная Н., 39 лет, проживает в Москве, находилась в контакте с больным К. и его семьей с момента его приезда в Москву. Оспенные знаки от прививок, произведенных в детстве, отчетливы, позднее прививкам против оспы не подвергалась. Заболела 8/1 1960 г., когда почувствовала головную боль, сильную слабость, боли в суставах; температура 38,6°С. На 4 сут болезни при снижении температуры появилась мелкоточечная сыпь на коже в области локтевых и коленных суставов, кистях рук с зудом и болевыми ощущениями. На голове, лице и груди пятнистая сыпь. На 5—6-й день пятна как будто приподнялись, образовались везикулы, наполненные желтоватой жидкостью, на ладонях и подошвах зуд, сыпи не отмечалось. На 4-й день наблюдалась припухлость локтевых суставов.

Лабораторно из содержимого пустул и везикул выделен на куриных эмбрионах оспенный вирус.

Диагноз: вариолоид с множественными высыпаниями.

К 26/1 на коже сохранились пигментированные пятна на месте бывших папул. Больная лечилась в инфекционном отделении больницы им. С. П. Боткина, выздоровела, выписана 16/11 1960 г.

Больной Т., 61 года, работает врачом-отоларингологом. В больнице им. С. П. Боткина посещал больного К. 27 и 29/XII 1959 г. Последний раз прививался против оспы в 1914 г. 7/1 1960 г. почувствовал недомогание, головную боль, повышение температуры. 8/1 работал, но чувствовал усталость и головную боль, ушел с работы раньше времени, к вечеру температура поднялась до 38 °С. 9/1 утром принял 1 таблетку сульфазола, затем еще 2 таблетки. К середине дня на коже лица и туловища появилась мелкоточечная узелковая сыпь. Температура 8 и 9/1 держалась в пределах 38,5—39°С. 10/1 сыпь появилась на голове и конечностях. Температура 39 °С.

11/1 поступил в инфекционное отделение больницы им. С. П. Боткина. При поступлении в больницу состояние больного тяжелое, температура 39,3 °С. На лице, волосистой части головы, туловище и конечностях обильная пятнисто-папулезная сыпь, выраженная также на разгибательных поверхностях конечностей. В зеве легкая гиперемия. 12/1 температура высокая, обильная папулезная полиморфная ярко-красная сыпь.

13/1 зарегистрировано падение температуры до 37,6°С, сыпь значительно увеличилась по всей поверхности тела, приняла геморрагический характер, появились отдельные везикулы. Врачи заподозрили ветряную оспу.

14/1 лицо пациента стало пастозным, сыпь на лице и волосистой части головы сделалась сливной, более полиморфной. Появилась сыпь на ладонях и подошвах. Наряду со свежими пузырьками, наполненными мутной жидкостью и окаймленными красным ободком, имеются пузырьки, появившиеся ранее, на некоторых из них черные корочки. Возникло подозрение на variola vera.

15/1 температура у больного Т. снизилась до нормальной, состояние улучшилось, локализация сыпи осталась прежней, но на верхушках высыпаний появилось много вдавлений в виде пупочков, количество корочек увеличилось.

Материал из пустул взят на исследование и направлен в лабораторию Московской городской санитарно-эпидемиологической станции и в Институт им. И. И. Мечникова. Приглашенный к больному Т. консультант диагностировал variola vera discreta.

Диагноз оспы 15/1 подтвержден вирусоскопически: обнаружены элементарные тельца Пашена серебрением по Морозову, в последующем через 3 дня методом Пауля и через 6 дней путем реакции задержки гемагглютинации.

В последующие дни при лечении состояние больного заметно улучшилось, отмечалось нагноение везикул и образование корочек. С 21/1 началось обильное образование корочек и шелушение, корочки д лительно задерживались на ладонях и подошвах.

К 14/II очищение от корочек закончилось, оставались пигментированные рубцы в большом количестве на туловище и конечностях, в меньшем количестве на лице.

Лечение проводилось пенициллином и стрептомицином, а также симптоматическое по 21/1. Выписан из больницы 16/11 на 40-й день болезни.

За период с 22/XII 1959 г., т. е. с момента прибытия больного К. из Индии в Москву, и по 16/11 1960 г. различными клиническими формами оспы заболело 46 человек.

При изучении клинических проявлений натуральной оспы во время вспышки выявлен ряд особенностей, представляющих интерес для клиницистов и эпидемиологов даже сегодня. Анергическая форма была у одного больного, сливная — у 2, рассеянная — у 3, вариолоид со множественными высыпаниями — у 8, вариолоид с единичными высыпаниями — у 29 и заболевание без сыпи — у 3 больных (табл. 3.26, 3.27).

Таблица 3.26. Клинические формы болезни и течение натуральной оспы во время вспышки в Москве в 1959-1960 гг.*

источник