Меню Рубрики

Вирус оспы тип симметрии

Вирусы [от лат. virus, яд] — наименьшие по размерам агенты, имеющие геном, окружённый белковой оболочкой. Вирусы не воспроизводятся самостоятельно, они — облигатные внутриклеточные паразиты, репродуцирующиеся только в живых клетках. Все вирусы существуют в двух формах. В настоящее время известны вирусы бактерий (бактериофаги), грибов, растений и животных.

Внеклеточная форма — вирион — включает в себя все составные элементы (капсид, нуклеиновую кислоту, структурные белки, ферменты и др.). Внутриклеточная форма — вирус — может быть представлена лишь одной молекулой нуклеиновой кислоты, так как, попадая в клетку, вирион распадается на составные элементы.

Несмотря на внутриклеточный паразитизм, среди вирусов имеются крупные виды, соизмеримые по размерам с микоплазмами и хламидиями. Например, вирус натуральной оспы достигает 400 нм и вполне сравним с риккетсиями (300-500 нм) и хламидиями (300-400 нм). По морфологии выделяют вирусы палочковидные (например, возбудитель лихорадки Эбола), пуле-видные (вирус бешенства), сферические (герпесвирусы), овальные (вирус оспы), а также бактериофаги, имеющие сложную форму (рис. 2-1). При всём разнообразии конфигураций, размеров и функциональных характеристик вирусам присущи некоторые общие признаки. В общем виде зрелая вирусная частица (вирион) состоит из нуклеиновой кислоты, белков и липидов, либо в его состав входят только нуклеиновые кислоты и белки.

Вирусы содержат только один тип нуклеиновой кислоты, ДИК или РНК, но не оба типа одновременно. Например, вирусы оспы, простого герпеса, Эпстайна-Барр — ДНК-содержащие, а тогавирусы, пикорнавирусы — РНК-содержащие. Геном вирусной частицы гаплоидный. Наиболее простой вирусный геном кодирует 3-4 белка, наиболее сложный — более 50 полипептидов. Нуклеиновые кислоты представлены однонитевыми молекулами РНК (исключая реовиру-сы, у которых геном образован двумя нитями РНК) или двухнитевыми молекулами ДНК (исключая парвовирусы, у которых геном образован одной нитью ДНК). У вируса гепатита В нити двухнитевой молекулы ДНК неодинаковы по длине.

Вирусные ДНК образуют циркулярные, ковалентно-сцёпленные суперспирализованные (например, у паповавирусов) или линейные двухнитевые структуры (например, у герпес- и аденовирусов). Их молекулярная масса в 10-100 раз меньше массы бактериальных ДНК. Транскрипция вирусной ДНК (синтез мРНК) осуществляется в ядре заражённой вирусом клетки. В вирусной ДНК на концах молекулы имеются прямые или инвертированные (развёрнутые на 180″) повторяющиеся нуклеотидные последовательности. Их наличие обеспечивает способность молекулы ДНК замыкаться в кольцо. Эти последовательности, присутствующие в одно- и двух-нитевых молекулах ДНК, — своеобразные маркёры вирусной ДНК.

Рис. 2-1. Размеры и морфология основных возбудителей вирусных инфекций человека.

Вирусные РНК представлены одно- или двухнитевыми молекулами. Однонитевые молекулы могут быть сегментированными — от 2 сегментов у ареновирусов до 11 — у ротавирусов. Наличие сегментов ведёт к увеличению кодирующей ёмкости генома. Вирусные РНК подразделяют на следующие группы: плюс-нити РНК (+РНК), минус-нити РНК (-РНК). У различных вирусов геном могут образовывать нити +РНК либо -РНК, а также двойные нити, одна из которых -РНК, другая (комплементарная ей) — +РНК.

Плюс-нити РНК представлены одиночными цепочками, имеющими характерные окончания («шапочки») для распознавания рибосом. К этой группе относят РНК, способные непосредственно транслировать генетическую информацию на рибосомах заражённой вирусом клетки, то есть выполнять функции мРНК. Плюс-нити выполняют следующие функции: служат мРНК для синтеза структурных белков, матрицей для репликации РНК, упаковываются в капсид с образованием дочерней популяции. Минус-нити РНК не способны транслировать генетическую информацию непосредственно на рибосомах, то есть они не могут функционировать как мРНК. Однако такие РНК служат матрицей для синтеза мРНК.

Многие вирусные нуклеиновые кислоты инфекционны сами по себе, так как содержат всю генетическую информацию, необходимую для синтеза новых вирусных частиц. Эта информация реализуется после проникновения вириона в чувствительную клетку. Инфекционные свойства проявляют нуклеиновые кислоты большинства +РНК- и ДНК-содержащих вирусов. Двухнитевые РНК и большинство -РНК не проявляют инфекционных свойств.

источник

Вирусы – неклеточная форма жизни, обладает собственным геномом, способностью к самовоиспроизведению (репродукции) в клетках живых организмов или клеточных культурах, адаптационными свойствами и изменчивостью.

Выделены в отдельное царство – Vira.

— нет клеточной организации: не имеют цитоплазмы и ядра, митохондрий, рибосом и других органелл
— содержат только одну из двух нуклеиновых кислот – ДНК или РНК, выполняющих функции генома.
— не имеют собственных белоксинтезирующих и генерирующих энергию систем и являются абсолютными внутриклеточными паразитами на генетическом уровне, полностью зависят от клетки-хозяина
— размножаются не обычным бинарным делением, а репродуцируются в чувствительной клетке, согласно генетической программе в нуклеиновой кислоте вируса, при этом используют биосинтетические системы и ресурсы­­­­

Различают две формы существования вирусов – внеклеточную и внутриклточную.

Внеклеточный вирус = вирион. Это покоящаяся (зрелая) форма вируса. Не проявляет жизедеятельности. Функции: сохранение вируса во внешней среде и перенос его из организма в другой организм или из клетки в другую клетку.

Внутриклеточный вирус — вегетативный вирус — репродуцируется в инфицированной клетке, вызывая репродуктивную инфекцию, заканчивающуюся образованием дочернего поколения вирионов и, как правило, гибелью клетки. Процесс репродукции может быть незавершенным, без образования вирионов – возникает абортивная инфекция.

Некоторые вирусы способны встраивать свой генетический материал в хромосомы клетки-хозяина в виде провируса, которые реплицируется вместе с этой хромосомой в процессе деления и переходит в дочерние клетки. Это – интегративная инфекция, она модет существовать длительное время или переходить обратно в продуктивную.

Морфология и строение вирусов (вирионов). Размеры вирусов находятся в диапазоне 20-350 нм.
Могут иметь палочковидную, многогранную, пулевидную, сферическую, нитевидную, булавовидную формы.
Различают: простые (безоболочечные) и сложные (оболочечные) вирусы. У них в центре – молекула нуклеиновой кислоты (ДНК/РНК), окруженная белковой оболочкой – капсидом. Вся структура носит название – нуклокапсид.

Простые вирусы – нуклеиновая кислота, ассоциированная с внутренними белками и капсидом (т.е. представляют собой нуклеокапсид).

Сложные вирусы – нуклеокапсид является сердцевиной вириона, поверх расположен суперкапсид – наружная оболочка, является модифицированной мембраной клеточного происхождения, в которую вирион «одевается» при выходе из клетки путем почкования. В двойной липидный слой мембраны встроены вирусспецифические поверхностные белки – гликопротеины (гемагглютинины, нейраминидаза,белки слияния и другие, ответственные за прикрепление вириона к рецепторам клетки и проникновение в нее), расположенные трансмембранно и выстуающие наружу в виде шипиков. Гликопротеины – протективные Аг.
У многих сложных вирусов к нуклеокапсиду изнутри прилегает слой матричного белка (М-слой). Некоторые вирусы имеют другие дополнительны структуры.

Защитная белковая оболочка – капсид – состоит из множества однородных белковых субъединиц. Т.к. на такое строение капсида расходуется мало генетической информации, оно важно для вирусов, обладающих небольшим геномом. Капсиды построены по спиральному или кубическому типу симметрии, в зависимости от расположения белковых субъединиц.

Типы симметрии.

1.Спиральный. Нуклеиновая кислота расположена винтообразно. Вокруг нее по спирали располагаются структурные белковые субъединицы овоидной формы (протомеры), надежно закрывающие нуклеиновую кислоту вируса. Расходуется много белка, но структура – прочная.
Форма нуклеокапсида полочковидная или нитевидная.
Простые вирусы со спиральным типом симметрии — в основном вирусы растений (вирус табачной мозаики – палочковидный, бактериофаги – нитевидные). Среди поражающих человека простых вирусов — таких не встречается.
Сложные вирусы со спиральным типом симметрии (орто-, пара-, миксовирусы) имеют нуклеокапсид, представляющий собой длинный тяж, упакованный в виде клубка или плотной спирали, который покрыт суперкапсидом, благодаря чему вирион имеет сферическую форму.

2. Кубический тип симметрии. Большинство вирусов посмотрены по этому типу, форма – икосаэдра (20-гранник). Капсид построен из морфологических единиц – капсомеров, имеющих шаровидную, иногда призматическую форму. Каждый капсомер состоит из 5 (пентомер) или 6 (секстомер) структурных белковых единиц. В основе кубической симметрии – комбинации равносторонних треугольников, образуемых капсомерами, что ведет к формированию замкнутой сферической поверхности с полостью внутри.
Белка затрачивается меньше, чем при спиральном типе симметрии. Менее прочен и ненадежно закрывает нуклеиновую кислоту.

Капсиды разных вирусов состоят из различного, но строго определенного для данной таксономической группы, для каждого типа, вида вирусов, количества капсомеров (у вируса полиомиелита – 32 капсомера, у вируса гепатита В – 180 капсомеров).

Последнее изменение этой страницы: 2017-01-19; Нарушение авторского права страницы

источник

ВИРУСОЛОГИЯ

1. Вирусы относятся к живым, но их нельзя назвать орг-мами. Отличия от живых систем:

2) очень простое строение вириона – геном (ДНК или РНК) и капсид (белковая оболочка);

3) нет клеточного строения – нет цитоплазмы, мембран, рибосом;

4) у вириона есть только 1 вид нуклеиновой к-ты – ДНК или РНК;

5) нет способности к росту и бинарному делению;

6) особая ступень паразитизма – вирусы паразитируют на молекулярном (генетическом) уровне – это отличие от гельминтов (паразитируют в орг-ме) и малярийных плазмодиев и гонококков (паразитируют в клетке);

7) способны объединять собственный геном с геномом клетки-хозяина;

8) не могут существовать без клетки-хозяина;

9) могут иметь фрагментированный геном.

Вирусы – облигатные паразиты, так как не могут существовать без клетки-хозяина, потому что его репродукция (увеличение численности вирусных частиц) возможна только в клетке хозяина. Вирусы не способны к росту и делению.

Вирион, капсид, нуклеокапсид, тип симметрии, суперкапсид.

Вирио́н — полноценная вирусная частица, состоящая из нуклеиновой кислоты и капсида (оболочки, состоящей из белка и, реже, липидов) и находящаяся вне живой клетки.

Основной компонент вириона – капсид(белковая оболочка), кот-й содержит внутри нуклеиновую к-ту. Нуклеокапсид – нуклеиновая к-та, окружённая капсидом.

Капсиды построены из белковых субъединиц (капсомеров). Капсомер – молекула белка. У многих вирусов, кроме нуклеиновой к-ты, есть ещё специальные ферменты.

По типу строения вирионов выделяют:

1) спиральный тип симметрии – вирусы гриппа, парагриппа и др;

2) квазисферический – кубический или икосаэдральный тип симметрии;

3) смешанный у Т-чётных бактериофагов – головка в виде многогранников, хвост – спиралью.

Тип симметрии определяется только нуклеокапсидом, суперкапсид при этом не учитывают. Суперкапсид – это дополнительная оболочка, или пеплос.

Критерии современной классификации вирусов.

1.Нуклеиновая кислота: тип, число нитей, процентное содержа­ние, молекулярный вес, содержание гуанина и цитозина.

2.Морфология: тип симметрии или псевдосимметрия, число капсомеров для вирусов с кубической симметрией, наличие внешней липопротеидной оболочки, форма, размеры вирионов.

3.Биофизические свойства: константа седиментации, плавучая плотность.

4.Белки: количество структурных белков и их локализация, аминокислотный состав.

6.Размножение в тканевых культурах: особенности репликации.

7.Круг поражаемых хозяев: особенности патогенеза инфекционного процесса; онкогенные свойства.

8.Устойчивость к физическим и химическим факторам (гамма-лучи, термоинактивация при 37 0 и 56 0 , действие жирорастворителей и отдельных катионов).

4. Типы вирусных геномов

1.Одноцепочечная единая РНК, обладающая матричной активностью (позитивная РНК) — вирус полиомиелита и др.

2.Одноцепочечная единая РНК, не обладащая матричной активностью (негативная РНК). Вирион имеет транскриптазу — парамиксовирусы, рабдовирусы и др.

3.Одноцепочечная фрагментированная РНК, не обладающая матричной активностью (негативная РНК). Вирион имеет транскриптазу — ортомиксовирусы.

4.Двухцепочечная фрагментированная РНК. Вирион имеет транскриитазу — реовирусы.

5.Вирусы, геном которых представлен двумя идентичными нитями позитивной РНК (диплоидный геном). Вирионы имеют обратную транскриптазу- ретровирусы.

6.Одноцепочечная линейная ДНК — парвовирусы.

7.Одноцепочечная кольцевая ДНК — фаги М13, ØX174.

8.Двухцепочечная линейная ДНК — вирус герпеса и др.

9.Двухцепочечная кольцевая ДНК — паповавирусы, вирус гепатита В и др.

10.Двухцепочечная ДНК с ковалентносвязанным терминальным гидрофобным белком — аденовирусы.

11.Двухцепочечная ДНК, замкнутая на каждом конце ковалентной связью — вирус оспы.

5. Методы культивирования вирусов.

Вирусы размножаются только в живых клетках. Культивирование вируса происходит на уровне орг-ма подопытного животного и на уровне культуры клеток (то есть вне орг-ма). Вирусы имеют тканевую и типовую специфичность. Поэтому при выделении неизвестного вируса одномоментно заражают 3-4 культуры клеток. Чаще используют эмбриональные ткани (куриный эмбрион). Вирусы оспы хорошо размножаются в хорион-аллантоисной оболочке, вирус паротита – в амнионе, вирус гриппа – в амнионе и аллантоисе, вирус бешенства – в желточном мешке. Берут 12-дневные эмбрионы.

При невозможности выделить и идентифицировать вирус стандартными методами (на культуре клеток и куриных эмбрионах) инфекционный материал вводят лабораторным животным (мыши, кролики, обезьяны), после развития инфекционного процесса проводят повторное заражение чувствительных клеточных культур.

Заражение лабораторных животных.

Методы заражения животных разнообразны: внутрибрюшинный, внутривенный, внутримышечный, интраназальный, заражение в мозг и другие.

Заражение в мозг. (Метод применяют при работе с нейротропными вирусами). Для заражения чаще используют белых мышей. Левой рукой плотно прижимают мышь к столу, большим и указательным пальцами оттягивают кожу головы назад. Туберкулиновым шприцем с предохранительной муфтой на игле прокалывают лобную кость несколько латеральнее средней линии и вводят 0,02-0,03 мл материала. Игла вводится на глубину 1,5-2 мм, при этом отчетливо ощущается «провал» в полость черепа.

При заражении новорожденных мышей (2-3-дневного возраста) их лучше брать руками в перчатках, чтобы после заражения мышата не имели постороннего запаха (пота, дезинфицирующих веществ, антибиотиков и т.д.), так как самка съедает мышат, имеющих посторонний запах. Материал вводят в количестве 0,01 мл. Вытекающую жидкость удаляют сухим стерильным ватным тампоном без дезинфицирующих ве­ществ. После заражения мышат помещают в отдельную банку (в свое гнездо), а через 20-30 минут подсаживают к ним самку.

Больных мышат самка также съедает. Поэтому надо уловить момент извлечения зараженных животных для завершения опыта. Первые два дня просматривают мышат 1-2 раза в день, а затем чаще. Через 3-4 дня здоровый мышонок в два раза больше зараженного.

Культуры клеток (тканей).

Культуры ткани — это клетки ткани выращенные вне организма на специальной питательной. среде. Клетки ткани в искусственных условиях сохраняю? присущи им обмен и восприимчивость к определенным вирусам. Для культивирования вирусов особенно пригодны клетки с быстрым ростом. По этой причине широко применяют эмбриональные ткани (фибробласты куриных эмбриовов, клетки человека к др., а также культуры тканей опухолей (клетки-Неla, Нер-2 и др.).

Кулътивирование клеток может призойти в специальных флаконах (колбы-матрацы, флаконы Карреля) и в пробирках. Культура клеток для роста должна иметь какую-либо опору, например, стенку пробирки.

В выросшую культуру ткани, которая покрывает стенку сосуда в виде однослойного клеточного пласта, засевают материал, содержащий вирус. Работу производят в стерильных условиях. Для подавления роста микрофлоры вируссодержащий материал предварительно обрабатывают антибиотиками, чаще пенициллином и стрептомицином. Питательной средой для культуры ткани могут быть различные растворы, сослав которых приближается к составу жидкости организма (синтетическая среда 199, солевой раствор Хенкса с сывороткой, гидролизат лактальбумина с сывороткой и другие).

9. Признаки размножения вирусов в курином эбрионе.«эффект карликовости» (замедление роста), мумификация, шарообразная форма зародыша и гибель на 3—6-й день после заражения.

Сущность метода бляшек.

В основе метода лежит появление в монослое зараженных вирусом клеток обесцвеченных участков, состоящих из дегенерированных клеток. Эти участки, получившие название бляшек, представляют собой колонии вируса, образующегося из одной вирусной частицы.

Метод заключается в следующем. В специальном флаконе на стенке монослой клеток, затем удаляют питательную среду. Клетки заражаю вирусом и заливают агаром, содержащим индикатор нейтральный красный. Там, где происходит рост клеток, среда изменится в кислую сторону и индикатор окрасится в розовый цвет. На тех участках, где клетки погибли под действием вируса, рН среды и, следовательно, цвет индикатора не изменяется. Такие островки неокрашенной среды имеют вид беловатых бляшек.

Типы вирусных инфекций.

1.Вирусы с непродолжит пребыванием вируса в организие

Читайте также:  Чем делали прививку от оспы в ссср

-острая; -бессимптомная; -абортативная инфекция

2. Вирусы с продолжит пребывание вируса в организме

-латентные; -Хронические; -медленные

Что такое вирогения?

(от вирусы и греч. -geneia — создание, происхождение), форма сосуществования вируса с клеткой, при к-рой геном вируса включается в хромосому клетки. При В. не происходит автономной репродукции вируса, а его нуклеиновая к-та реплицируется совместно с ДНК клетки-хозяина. Вирусы, обусловливающие В., наз. умеренными. К ним относятся бактериофаги. вызывающие лизогению, а также онкогенные вирусы, под действием к-рых в заражённых клетках наблюдаются наследств, изменения (трансформация), проявляющиеся в их неограниченном росте и делении. В трансформированных клетках геном вируса содержится в виде вирусной ДНК — про-вируса.

Основные классы плазмид.

КЛАСС ФУНКЦИЯ
F-плазмиды Донорные функции
R-плазмиды Устойчивость к лекарственным препаратам
Col-плазмиды Синтез колицинов
Ent-плазмиды Синтез энтеротоксинов и факторов адгезии
Hly-плазмиды Синтез гемолизинов
Биодеградативные плазмиды Разрушение различных органических соединений

Что такое фаготипирование?

Фаготипирование (лизотипирование, фаготипаж) — это метод дифференциации бактерий при помощи бактериофагов. Микробы можно типировать путем изучения свойств их умеренных фагов и по чувствительности к набору специфических бактериофагов.
Наибольшее значение фаготипирование имеет для совершенствования эпидемиологического анализа и диагностики инфекционных заболеваний.

ВИРУСОЛОГИЯ

1. Вирусы относятся к живым, но их нельзя назвать орг-мами. Отличия от живых систем:

2) очень простое строение вириона – геном (ДНК или РНК) и капсид (белковая оболочка);

3) нет клеточного строения – нет цитоплазмы, мембран, рибосом;

4) у вириона есть только 1 вид нуклеиновой к-ты – ДНК или РНК;

5) нет способности к росту и бинарному делению;

6) особая ступень паразитизма – вирусы паразитируют на молекулярном (генетическом) уровне – это отличие от гельминтов (паразитируют в орг-ме) и малярийных плазмодиев и гонококков (паразитируют в клетке);

7) способны объединять собственный геном с геномом клетки-хозяина;

8) не могут существовать без клетки-хозяина;

9) могут иметь фрагментированный геном.

Вирусы – облигатные паразиты, так как не могут существовать без клетки-хозяина, потому что его репродукция (увеличение численности вирусных частиц) возможна только в клетке хозяина. Вирусы не способны к росту и делению.

Вирион, капсид, нуклеокапсид, тип симметрии, суперкапсид.

Вирио́н — полноценная вирусная частица, состоящая из нуклеиновой кислоты и капсида (оболочки, состоящей из белка и, реже, липидов) и находящаяся вне живой клетки.

Основной компонент вириона – капсид(белковая оболочка), кот-й содержит внутри нуклеиновую к-ту. Нуклеокапсид – нуклеиновая к-та, окружённая капсидом.

Капсиды построены из белковых субъединиц (капсомеров). Капсомер – молекула белка. У многих вирусов, кроме нуклеиновой к-ты, есть ещё специальные ферменты.

По типу строения вирионов выделяют:

1) спиральный тип симметрии – вирусы гриппа, парагриппа и др;

2) квазисферический – кубический или икосаэдральный тип симметрии;

3) смешанный у Т-чётных бактериофагов – головка в виде многогранников, хвост – спиралью.

Тип симметрии определяется только нуклеокапсидом, суперкапсид при этом не учитывают. Суперкапсид – это дополнительная оболочка, или пеплос.

источник

Вирусные заболевания возникли в глубокой древности, однако вирусология как наука начала развиваться в конце XIX века.

В 1892 г. русский ученый-ботаник Д. И. Ивановский, изучая мозаичную болезнь листьев табака, установил, что заболевание это вызывается мельчайшими микроорганизмами, которые проходят через мелкопористые бактериальные фильтры. Эти микроорганизмы получили название фильтрующихся вирусов (от лат. virus — яд). В дальнейшем было показано, что имеются и другие микроорганизмы, проходящие через бактериальные фильтры, поэтому фильтрующиеся вирусы стали называть просто вирусами.

Вопрос о происхождении вирусов является предметом многих исследований и дискуссий. Одни ученые предполагают, что вирусы являются потомками неклеточных форм живых паразитических микроорганизмов. Другие считают, что вирусы возникли в результате регрессивной эволюции одноклеточных микроорганизмов. Третьи думают, что вирусы произошли из клеточных элементов, ставших автономными системами.

Большой вклад в изучение вирусов внесли советские вирусологи: М. А. Морозов, Н. Ф. Гамалея, Л. А. Зильбер, М. П. Чумаков, А. А. Смородинцев, В. М. Жданов и др.

Вирусы — это неклеточная форма существования живой материи. Они очень малы. По образному выражению В. М. Жданова «величину их по отношению к величине средних бактерий можно сравнить с величиной мыши по отношению к слону». Увидеть вирусы стало возможным только после изобретения электронного микроскопа.

В настоящее время для изучения вирусов используют много методов: химические, физические, молекулярно-биологические, иммунобиологические и генетические.

Все вирусы подразделяются на поражающие человека, животных, насекомых, бактерии и растения.

У вирусов наблюдается большое разнообразие форм и биологических свойств, однако все они имеют общие черты строения. Зрелые частицы вирусов называют вирионами.

В отличие от других микроорганизмов, содержащих одновременно ДНК и РНК, вирион содержит только одну из нуклеиновых кислот — либо ДНК, либо РНК.

Нуклеиновая кислота вирусов может быть однонитчатой и двунитчатой. Почти все вирусы, содержащие РНК, имеют в своем геноме однонитчатую РНК, а содержащие ДНК — двунитчатую ДНК. В соответствии с двумя типами генетического вещества вирусы подразделяют на РНК- и ДНК-содержащие. К ДНК-содержащим относятся 5 семейств, РНК-содержащим — 10 семейств.

* ( Здесь приведены данные, касающиеся только некоторых из патогенных для человека вирусов.)


Классификация вирусов

Структура вириона. В центре вириона находится нуклеиновая кислота, которая окружена капсидом (от греч. kanca — ящик). Капсид состоит из белковых субъединиц, называемых капсомерами. Зрелый вирус по химической структуре является нуклеокапсидом. Количество капсомер и способ их укладки (рис. 52) строго постоянны для каждого вида вируса. Например, вирус полиомиелита содержит 32 капсомера, а аденовирус — 252 капсомера. Капсомеры могут быть уложены в виде многогранника с равномерными симметричными гранями — кубоидальная форма (например, аденовирус). Укладка в виде спиралей (сферическая) характерна для вирусов гриппа. Может быть тип симметрии, при котором нуклеиновая кислота имеет вид пружины, вокруг которой уложены капсомеры, в этом случае вирус имеет палочковидную форму — вирус, вызывающий болезнь листьев табака.


Рис. 52. Схематическое изображение расположения капсомеров в капсиде вирусов. а — вирус гриппа; б — аденовирус; в — вирус герпеса; г — вирус полиомиелита

Сложный тип симметрии имеет фаг: головка — кубоидальной, а отросток — палочковидной формы (сперматозоидная форма) (см. рис. 21, 22).

Таким образом, в зависимости от способа укладки вирусы подразделяют на кубоидальную, сферическую, палочковидную и сперматозоидную формы.

Некоторые вирусы, обладающие более сложной структурой, имеют оболочку, которая называется пеплос. Она образуется при выходе вируса из клетки хозяина. Вирусный капсид при этом обволакивается внутренней поверхностью цитоплазматической мембраны клетки хозяина и образуется один или несколько слоев оболочки суперкапсид. Такую оболочку имеют только некоторые вирусы, например вирусы бешенства, герпеса, энцефалита. Эта оболочка содержит фосфолипиды, разрушающиеся под воздействием эфира. Таким образом, воздействуя эфиром, можно отличить вирус, имеющий пеплос, от вируса с «голым капсидом».

У некоторых вирусов из внешнего липидного слоя оболочки выступают капсомеры в виде шипов (эти шипы тупые). Такие вирусы называются пепломерами (например, вирус гриппа, см. рис. 52).

Нуклеиновая кислота вируса является носителем наследственных свойств, а капсид и внешняя оболочка несут защитные функции, как бы оберегая нуклеиновую кислоту. Кроме того, они способствуют проникновению вируса в клетку.

Размеры вирусов. Измеряются вирусы в нанометрах. Величина их колеблется в широком диапазоне от 15-20 до 350-400 нм.

Методы измерения вирусов: 1) фильтрование через бактериальные фильтры с известной величиной пор; 2) ультрацентрифугирование — крупные вирусы осаждаются быстрее; 3) фотографирование вирусов в электронном микроскопе.

Химический состав вирусов. Количество и содержание ДНК и РНК вирусов неодинаковы. У ДНК молекулярная масса колеблется от 1·10 6 до 1,6·10 8 , а у РНК — от 2·10 6 до 9,0·10 6 .

Белки у вирионов обнаружены в незначительном числе, они состоят из 16-20 аминокислот. Кроме капсидных белков, имеются еще внутренние белки, связанные с нуклеиновой кислотой. Белки обусловливают антигенные свойства вирусов, а также в силу плотной укладки полипептидных цепей ограждают вирус от действия ферментов клетки хозяина.

Липиды и углеводы обнаружены во внешней оболочке сложных вирионов. Источником липидов и углеводов является оболочка клетки хозяина. Полисахариды, входящие в состав некоторых вирусов, обусловливают способность их вызывать агглютинацию эритроцитов.

Ферменты вирусов. Вирусы не имеют собственного метаболизма, поэтому они не нуждаются в ферментах обмена веществ. Однако у некоторых вирусов выявлено наличие ферментов, способствующих проникновению их в клетку хозяина. Например, у вируса гриппа А обнаружена нейраминидаза, отщепляющая нейраминовую кислоту, содержащуюся в оболочках животных клеток (эритроцитов и др.). У фагов — лизоцим, разрушающий клеточную оболочку, фосфатаза и др.

Выявление вирусных антигенов. Вирусные антигены в инфицированных клетках хозяина можно обнаружить с помощью метода иммунофлюоресценции. Препараты, содержащие клетки, инфицированные вирусами, обрабатывают специфическими иммунными люминесцирующими сыворотками. При просмотре в люминесцентном микроскопе в местах скопления вирусных частиц наблюдается характерное свечение. Вид вируса определяют по соответствию специфической люминесцирующей сыворотки, вызвавшей свечение.

Внедрение вируса в клетку, взаимодействие его с клеткой хозяина и репродукция (размножение) слагаются из ряда последовательных стадий.

Стадия 1. Начинается с процесса адсорбции за счет рецепторов вириона и клетки. У сложных вирионов рецепторы располагаются на поверхности оболочки в виде шиловидных выростов (вирус гриппа), у простых вирионов — на поверхности капсида.

Стадия 2. Проникновение вируса в клетку хозяина протекает по-разному у разных вирусов. Например, некоторые фаги протыкают оболочку своим отростком и впрыскивают нуклеиновую кислоту в клетку хозяина (см. главу 8). Другие вирусы попадают в клетку путем втягивания вирусной частицы с помощью вакуоли, т. е. на месте внедрения в оболочке клетки образуется углубление, затем края ее смыкаются и вирус оказывается в клетке. Такое втягивание называется виропексис.

Стадия 3. «Раздевание вируса» (дезинтеграция). Для своего воспроизведения вирусная нуклеиновая кислота освобождается от защищающих ее белковых покровов (оболочки и капсида). Процесс раздевания может начаться во время адсорбции, а может произойти тогда, когда вирус находится уже внутри клетки.

Стадия 4. На этой стадии происходит репликация (воспроизведение) нуклеиновых кислот и синтез вирусных белков. Эта стадия происходит при участии ДНК или РНК клетки хозяина.

Стадия 5. Сборка вириона. Этот процесс обеспечивается самосборкой белковых частиц вокруг вирусной нуклеиновой кислоты. Синтез белка может начаться непосредственно после синтеза вирусной нуклеиновой кислоты либо после интервала в несколько минут или несколько часов. У одних вирусов самосборка происходит в цитоплазме. У других в ядре клетки хозяина. Образование внешней оболочки (пеплоса) всегда происходит в цитоплазме.

Стадия 6. Выход вириона из клетки хозяина происходит путем просачивания вируса через оболочку клетки либо через отверстие, образовавшееся в клетке хозяина (в этом случае клетка хозяина погибает).

Типы взаимодействия вируса и клетки. Первый тип — продуктивная инфекция — характеризуется образованием новых вирионов в клетке хозяина.

Второй тип — абортивная инфекция заключается в том, что обрывается репликация нуклеиновой кислоты.

Третий тип — характеризуется встраиванием вирусной нуклеиновой кислоты в ДНК клетки хозяина; возникает форма сосуществования вируса и клетки хозяина (вирогения). В этом случае обеспечивается синхронность репликации вирусной и клеточной ДНК. У фагов это называется лизогения.

Микроскопическое исследование. При отдельных вирусных инфекциях в цитоплазме или ядрах клеток организма хозяина наблюдаются специфические внутриклеточные тельца — включения, имеющие диагностическое значение (тельца Бабеша — Негри при бешенстве, тельца Гварниери при оспе и др.). Размеры вирусных частиц и телец-включений удается искусственно увеличить специальными методами обработки препаратов с протравой и импрегнацией (например, метод серебрения по Морозову) и наблюдать при иммерсионной микроскопии. Более мелкие вирионы, лежащие за пределами видимости оптического микроскопа, обнаруживаются только при электронной микроскопии. Существуют разные точки зрения в отношении внутриклеточных включений. Одни авторы считают, что они представляют собой скопление вирусов. Другие считают, что они возникают в результате реакции клетки на внедрение вирусов.

Генетика вирусов. Модификация (ненаследуемые изменения) у вирусов обусловливается особенностями клетки хозяина, в которой происходит репродукция вируса. Модифицированные вирусы приобретают способность заражать клетки, аналогичные тем, в которых они модифицировались. У разных вирусов модификация по-разному проявляется. Например, у фагов изменяется форма «негативных пятен» (фаговых колоний).

Мутация — у вирусов возникает под влиянием тех же мутагенов, которые вызывают мутацию у бактерий (физические и химические факторы). Возникает мутация во время репликации нуклеиновых кислот. Мутации затрагивают различные свойства вирусов, например чувствительность к температуре и др.

Генетическая рекомбинация у вирусов может возникнуть в результате одновременного заражения клетки хозяина двумя вирусами, при этом может произойти обмен отдельными генами между двумя вирусами и образуются рекомбинанты, содержащие гены двух родителей.

Генетическая реактивация генов иногда происходит при скрещивании инактивированного вируса с полноценным, что приводит к спасению инактивированного вируса.

Спонтанная и направленная генетика вирусов имеет большое значение в развитии инфекционного процесса.

Устойчивость к факторам окружающей среды. Большинство вирусов инактивируется при действии высоких температур. Однако имеются исключения, например вирус гепатита термоустойчив.

К низким температурам вирусы не чувствительны, ультрафиолетовые солнечные лучи оказывают инактивирующее действие на вирусы. Рассеянный солнечный свет действует на них менее активно. Вирусы устойчивы к глицерину, что дает возможность длительно сохранять их в глицерине. Они устойчивы к антибиотикам (при культивировании вирусов исследуемый материал обрабатывают антибиотиками для подавления бактериальной флоры).

Кислоты, щелочи, дезинфицирующие вещества инактивируют вирусы. Однако некоторые вирусы, инактивированные формалином, сохраняют иммуногенные свойства, что позволяет использовать формалин для получения вакцин (вакцина против бешенства).

Восприимчивость животных. Круг восприимчивых животных для некоторых вирусов очень широк, например к вирусам бешенства чувствительны многие животные. Некоторые вирусы поражают только один вид животного, например вирус чумы собак поражает только собак. Имеются вирусы, к которым животные не чувствительны — например, вирус кори и т. д.

Органотропность вирусов. Вирусы обладают способностью поражать определенные органы, ткани и системы. Например, вирус бешенства поражает нервную систему. Вирус оспы обладает дермотропностью и т. д.

Выделение вирусов в окружающую среду. Из больного организма вирусы могут выделяться с калом, например вирус полиомиелита и другие энтеровирусы. Вирус бешенства выделяется со слюной, вирус гриппа — с отделяемым слизистой носоглотки и т. д.

Основные пути передачи вирусов. Воздушно-капельный (грипп, оспа), пищевой (полиомиелит, гепатит А), контактно-бытовой (бешенство), трансмиссивный (энцефалит).

Противовирусный иммунитет. Организм человека обладает врожденной устойчивостью к некоторым вирусам. Например, человек не чувствителен к вирусу чумы собак. Животные не чувствительны к вирусу кори. В этих случаях противовирусный иммунитет основан на отсутствии клеток, способных поддерживать репродукцию вирусов.

Противовирусный иммунитет обусловливается как клеточными, так и гуморальными факторами защиты, неспецифическими и специфическими. Неспецифические факторы. Мощным ингибитором репродукции вирусов является белковое вещество — интерферон. В здоровом организме он содержится в незначительном количестве, а вирусы способствуют продукции интерферона и количество его значительно увеличивается. Он неспецифичен, так как блокирует репродукцию разных вирусов. Однако он обладает тканевой специфичностью, т. е. клетки разных тканей образуют неодинаковый интерферон. Считают, что механизм действия его заключается в том, что он препятствует синтезу белка в клетке хозяина и этим прекращает репродукцию вируса.

К специфическим факторам противовирусного иммунитета относятся вируснейтрализующие антитела, гемагглютинирующие и преципитирующие.

Методы культивирования вирусов. Вирусы размножаются только в жизнеспособных клетках. Их культивируют: в куриных эмбрионах (рис. 53), культурах ткани человека и различных животных, в организме чувствительных животных, восприимчивых членистоногих.

Читайте также:  Ветряная оспа после болезни


Рис. 53, Куриный эмбрион. 1 — хорион-аллантоис: 2 — аллантоисная полость; 3 — амниотическая полость; 4 — желточный мешок; 5 — воздушный мешок; 6 — подскорлупная оболочка

В первый период развития вирусологии основным методом изучения вирусов являлось искусственное заражение животных, но этот метод сложный, и кроме этого животные ко многим вирусам оказались невосприимчивы.

Большое значение в развитии вирусологии имело введение методов культивирования вирусов в куриных эмбрионах и в культуре клеток тканей человека и животных.

Заражение куриных эмбрионов. Для репродукции вирусов используют куриные эмбрионы 7-12-дневного возраста, инкубированные в термостате при 37° С. Необходимым условием для правильного развития зародыша является соблюдение определенной влажности воздуха, которую можно создать, поместив в термостат сосуд с водой.

Пригодность куриного эмбриона для заражения определяется по наличию движений эмбриона и развитой сети кровеносных сосудов на хорион-аллантоисной оболочке при просвечивании с помощью овоскопа.

Культивирование вирусов в куриных эмбрионах проводится в разных местах эмбриона, который заражают (см. рис. 53):

1) на хорион-аллантоисную оболочку,

3) в амниотическую полость;

Заражение куриных эмбрионов проводят в боксе с использованием стерильных инструментов. Перед заражением куриные эмбрионы двукратно протирают ватным тампоном, смоченным спиртом.

Заражение на хорион-аллантоисную оболочку. После дезинфекции яйца осторожно срезают кусочек скорлупы с тупого конца, снимают подскорлупную оболочку — при этом обнаруживается хорион-аллантоисная оболочка. Инфекционный материал в количестве 0,1-0,2 мл при помощи шприца или пастеровской пипетки наносят на хорион-аллантоисную оболочку. После заражения отверстие закрывают колпачком и просвет между ним и куриным эмбрионом заливают парафином.

На другой стороне яйца простым карандашом пишут название инфекционного материала и дату заражения.

Заражение в амниотическую полость. Яйцо овоскопируют и на боковой стороне выбирают участок, где хорион-аллантоис лишен крупных кровеносных сосудов. Этот участок отмечают карандашом. Яйца укладывают на подставку в горизонтальном положении, дезинфицируют и специальным стерильным копьем прокалывают отверстие в скорлупе на глубину 213 мм, через которое вводят на это же расстояние иглу с инфекционным материалом непосредственно в амниотическую полость. Для того чтобы вводимая жидкость не вытекала обратно, предварительно делают прокол над воздушным мешком, после чего оба отверстия заливают парафином.

Заражение в аллантоисную полость. Заражение проводят в затемненном боксе. Отмечают воздушное пространство, скорлупу над воздушным пространством дезинфицируют и через отверстие в скорлупе вводят по направлению к эмбриону иглу шприца с материалом. Если игла попала в аллантоисную полость, то наблюдается смещение тени эмбриона. После заражения отверстие заливают парафином.

Заражение в желточный мешок. Скорлупу дезинфицируют. Яйцо помещают на подставку тупым концом вправо так, чтобы желточный мешок был обращен вверх. Над воздушной камерой в центре прокалывают отверстие. Через отверстие в скорлупе в горизонтальном направлении на глубину 2-3 мм вводят иглу шприца, которая попадает в желточный мешок. Материал вводят в объеме 0,2-0,3 мл. После введения материала отверстие парафинируют.

Температурный режим и длительность инкубации зависят от биологических свойств введенного вируса.

Инфицированные яйца ежедневно проверяют — овоскопируют для проверки жизнеспособности эмбриона. Если эмбрионы погибают в первые сутки, то причиной этого обычно бывает травма при заражении. Такие яйца выводят из опыта.

При необходимости раздельно исследовать каждую составную часть эмбриона материал собирают в определенном порядке: отсасывают аллантоисную жидкость, затем амниотическую жидкость, разрезают хорион-аллантоисную оболочку, отделяют амниотическую оболочку, эмбрион, желточный мешок и только после этого извлекают хорион-аллантоисную оболочку, отделив ее от внутренней поверхности скорлупы. Наличие вируса в зараженном эмбрионе определяют по характерным изменениям хорион-аллантоисной оболочки зараженного куриного эмбриона.

Вирусы, не обладающие гемагглютинирующей активностью, выявляют с помощью РСК.

Для выявления вируса в аллантоисной или амниотических жидкостях зараженных эмбрионов ставят РГА (гемагглютинация вызывается аллантоисной или амниотическими жидкостями или взвесью, приготовленной из хорион-аллантоисной оболочки).

Культивирование вирусов в культуре клеток. Для накопления вирусов в чувстсительных клеточных культурах используются ткани человека и различных животных. Наибольшее практическое применение получили однослойные культуры первично-трипсинизированных и перевиваемых линий клеток.

Однослойные культуры клеток выращивают в стеклянных плоских сосудах-матрацах. Клеточная суспензия в жидкой питательной среде при температуре 37° С позволяет получить «in vitro» слой клеток с определенной гистологической структурой. Присутствие вирусов в культурах тканей обнаруживают по изменению (дегенерации) клеток. Тип вирусов определяют путем нейтрализации действия вирусов при добавлении к вируссодержащему материалу соответствующих типоспецифических сывороток.

Эти методы позволяют быстрее учитывать результаты исследования и являются более экономичными. В тех случаях, когда вирусы не вызывают цитопатического действия (дегенерации) и не развиваются в куриных эмбрионах, пользуются методами заражения животных (см. главу 11).

Для культивирования вирусов используют перевиваемые клетки, которые чаще получают из клеток злокачественных опухолей.

Однослойные культуры получают из эмбрионов человека, курицы, животных.

Преимущество однослойных культур клеток — простота методики и легкость учета.

Способность клеток к размножению вне организма связана со степенью дифференциации ткани. Менее дифференцированные ткани обладают большей способностью к пролиферации (соединительная, эпителиальная ткань).

Сущность методов при приготовлении первичных культур ткани заключается в разрушении межклеточной ткани и разобщении клеток для последующего получения монослоя.

Разобщение клеток проводится путем воздействия на ткань протеолитических ферментов, чаще всего трипсина. Раствор трипсина способствует разъединению клеток при сохранении у них способности к размножению. Для выращивания культуры клеток необходима питательная среда. Состав среды сложный, он включает целый ряд ингредиентов: аминокислоты, глюкозу, витамины, минеральные соли, коферменты и т. д. Получение культуры ткани проводят в строго асептических условиях. В среду добавляются антибиотики (500 ЕД пенициллина и 250 ЕД стрептомицина в 1 мл) для подавления роста бактериальной флоры.

Подготовленную ткань заливают 0,25% раствором подогретого трипсина и инкубируют в термостате при 37° С. Во время инкубации ткань периодически помешивают путем вращения колбы. Трипсинизированные клетки центрифугируют при 800-1000 об/мин в течение 5 мин.

Трипсинизацию и центрифугирование проводят очень осторожно, чтобы не травмировать клетки. После центрифугирования надосадочную жидкость удаляют, а осадок клеток помещают в небольшой объем питательной среды. Для получения однородной массы взвесь клеток фильтруют через один слой марли в воронке (стерильной). Взвесь клеток проверяют на стерильность путем посева по 0,1 мл , в 2 пробирки с сахарным бульоном.

Успех культивирования клеток зависит от посевной Дозы, поэтому после трипсинизации производят подсчет клеток в камере Горяева. После подсчета взвесь клеток разводят питательной средой из такого расчета, чтобы в 1 мл содержалось 500000-1000000 клеток и разливают по пробиркам и матрацам. Пробирки с культурой ткани инкубируют в термостате в наклонном положении.

Посеянные культуры ежедневно просматривают под малым увеличением микроскопа для определения характера их роста. Нормальные пролиферирующие клетки светлые и растут однослойным пластом. Если клетки темные, зернистые и не пролиферируют, что может быть результатом загрязнения (плохая обработка посуды или загрязнение ингредиентов), то такие культуры изымают из опыта.

Смена питательной среды через 2-3 дня после посева улучшает интенсивность пролиферации.

Нормальные, хорошо пролиферирующие клетки заражают исследуемым материалом.

Перевиваемые культуры преимущественно получают из злокачественных опухолей. Штамм Hela — культура клеток рака шейки матки женщины по имени Helena (получен в 1950 г.); штамм Нер-2 выделен от больного раком гортани. Рост этих клеток поддерживается в лабораториях путем последовательных пассажей. Особенность их заключается в том, что они размножаются в течение длительного срока. В настоящее время эти клетки прошли уже тысячи генераций. В процессе пассажей они теряют некоторые морфологические и биохимические свойства — подвергаются мутации. Однако остаются вполне пригодными для культивирования в них вирусов. Культурой этих клеток пользуются лаборатории всего мира.

Размножение вируса в культуре клеток происходит в различные сроки в зависимости от свойств вируса и вида клеток.

О наличии вируса судят по цитопатическому действию. В микроскопе наблюдается дегенерация клеток. Время цитопатического действия и его характер зависят от дозы и свойств вируса.

У некоторых вирусов цитопатическое действие обнаруживается через несколько дней (вирус оспы), у других — через 1-2 нед (вирус гепатита и др.).

В настоящее время известны уже сотни вирусов, поражающих человека. Борьба с вирусными инфекциями осуществляется разными методами. Наиболее эффективна иммунизация. Таким способом ликвидирована оспа, сокращена заболеваемость полиомиелитом. Важное значение в борьбе с вирусными инфекциями имеют общественная профилактика — уничтожение бродячих собак (борьба с бешенством), личная профилактика и т. д.

Однако эти меры не могут обеспечить ликвидацию всех вирусных заболеваний. Ученые настойчиво ищут пути, при помощи которых можно было бы поразить вирус, не повредив клетку, в которой он находится.

Поэтому закономерно, что в программе КПСС вирусология названа одной из ведущих отраслей естественнонаучных знаний, которая должна получить преимущественное развитие в ближайшие годы.

Основные методы исследования вирусов. 1. Реакция гемагглютинации, реакция задержки гемагглютинации, реакция непрямой гемагглютинации. Реакция связывания комплемента.

2. Реакция нейтрализации вирусов в культуре тканей.

3. Метод иммунофлюоресценции.

4. Гистологический метод — выявление включений (телец Бабеша — Негри — при бешенстве; телец Пашена — при оспе и др.).

источник

Без внешних оболочек: аденовирусы, паповавирусы.

С внешними оболочками: герпис – вирусы.

Смешанный тип симметрии: Т-четные бактериофаги.

Без определённого типа симметрии: оспенные вирусы.

Без внешних оболочек: крысиный вирус Килхама, аденосателлиты, фаг φΧ 174.

Без внешних оболочек: реовирусы, вирусы раневых опухолей растений.

Без внешних оболочек: полиовирус, энтеровирусы, риновирусы, вирус табачной мозаики.

С внешними оболочками: вирусы гриппа, парагриппа, бешенства, онкогенные РНК-содержащие вирусы.

«Портреты» вирусов различных типов строения:

А — вирус табачной мозаики со спиральным типом симметрии;

Б – реовирус с кубическим типом симметрии;

В – аномальные формы вирусов;

Г – сложноустроенные вирусы гриппа (1), оспы (2) и фаг (3)

Вирусы играют большую роль в жизни человека. Они являются возбудителями ряда опасных заболеваний – оспы, гепатита, энцефалита, краснухи, кори, бешенства, гриппа и др.

Вирусы, размножаются только в клетках, это внутриклеточные паразиты. В свободном, активном состоянии они не встречаются и не способны размножаться вне клетки. Если у всех клеточных организмов обязательно имеются две нуклеиновые кислоты – ДНК и РНК, то вирусы содержат только одну из них. На этом основании все вирусы делятся на две большие группы: ДНК, – содержащие и РНК – содержащие.

В отличие от клеточных организмов у вирусов отсутствует собственная система, синтезирующая белки. Вирусы вносят в клетку только свою генетическую информацию. С матрицы – вирусной ДНК или РНК – синтезируется матричная (информационная) РНК, которая и служит основой для синтеза вирусных белков рибосомами инфицированной клетки. Молекула ДНК вирусов, или их геном, может встраиваться в геном клетки – хозяина и существовать в таком виде неопределённо долгое время. Таким образом, паразитизм вирусов носит особый характер – это паразитизм на генетическом уровне.

Капельная инфекция – самый обычный способ распространения респираторных заболеваний. При кашле и чихании в воздух выбрасываются миллионы крошечных капелек жидкости (слизи и слюны). Эти капли вместе с находящимися в них живыми микроорганизмами могут вдохнуть другие люди, особенно в местах большого скопления народа, к тому же еще и плохо вентилируемых. Стандартные гигиенические приемы для защиты от капельной инфекции – правильное пользование носовыми платками и проветривание комнат.

Некоторые микроорганизмы, такие, как вирус оспы или туберкулезная палочка, очень устойчивы к высыханию и сохраняются в пыли, содержащей высохшие остатки капель. Даже при разговоре изо рта вылетают микроскопические брызги слюны, поэтому подобного рода инфекции очень трудно предотвратить, особенно если микроорганизм очень вирулентен.

(при непосредственном физическом контакте)

В результате непосредственного физического контакта с больными людьми или животными передаются сравнительно немногие болезни. К контагиозным вирусным болезням относится трахома (болезнь глаз, очень распространенная в тропических странах), обычные бородавки и обыкновенный герпес – «лихорадка» на губах.

ΙX. Список чёрных дел вирусов.

Некоторые наиболее известные вирусные

Микровирус одного их трех типов – А, В и С – с различной степенью вирулентности

Дыхательные пути: эпителий, выстилающий трахеи и бронхи.

Убитый вирус: штамм убитого вируса должен соответствовать штамму вируса, вызывающего заболевание

Самые разные вирусы, чаще всего риновирусы (РНК – содержащие вирусы)

Дыхательные пути: обычно только верхние

Живой или инактивированный вирус вводится путем внутримышечной инъекции; вакцинация не очень эффективна, так как существует множество самых разных штаммов риновирусов

Вирус натуральной оспы (ДНК – содержащий вирус), один из вирусов оспы

Дыхательные пути, затем – кожа

Капельная инфекция (возможна контагиозная передача через раны на коже).

Живой ослабленный (аттенуированный) вирус вносят в царапину на коже; сейчас не применяется.

Свинка (эпидеми-ческий паротит)

Ксовирус (РНК – содержащий вирус)

Дыхательные пути, затем генерализован-ная инфекция по всему телу через кровь; особенно поражаются слюнные железы, а у взрослых мужчин также и семенники

Капельная инфекция (или контагиозная передача через рот с заразной слюной)

Живой аттенуированный вирус

Ксовирус (РНК – содержащий вирус)

Дыхательные пути (от ротовой полости до бронхов), затем переходит на кожу и кишечник

Живой аттенуированный вирус

Коревая краснуха (краснуха)

Дыхательные пути, шейные лимфатические узлы, глаза и кожа

Живой аттенуированный вирус

Полиомие-лит (детский паралич)

Вирус полиомиелита (пикорнавирус; РНК – содержащий вирус, известно три штамма)

Глотка и кишечник, затем кровь; иногда двигательные нейроны спинного мозга, тогда может наступить паралич

Капельная инфекция или через человеческие испражнения

Живой аттенуированный вирус вводится перорально, обычно на кусочке сахара

Арбовирус, т.е. вирус, переносимый членистоногими (РНК – содержащий вирус)

Выстилка кровеносных сосудов и печень

Переносчики – членистоно гие, например клещи, комары

Живой аттенуированный вирус (очень важно также контролировать численность возможных переносчиков)

С

хематическое изображение строения основных вирусов, поражающих человека и животных. ДНК содержащие вирусы: 1-оспы; 2-паравакцины;3-герпеса;4-аденовирус;5-попававирус; 6-пикорнавирус. РНК содержащие вирусы: 7-гриппа; 8- парагриппа;9-везикулярного стоматита; 10-реовирус;11-энцефалита;12-полиомиелита.

Грипп — не столь уж тяжелая болезнь, однако им болеют ежегодно многие миллионы людей, а периодически возникают пандемии (повальные эпидемии) уносят немало жизней.

В 1886 и 1887 годах грипп зарегистрирован в России; летом 1889 года в Бухаре активность возбудителя повысилась, а позднее в том же году инфекция распространилась и на другие районы России и в Западную Европу. Так началась пандемия гриппа 1889-1890 годов. При второй и третьей эпидемиях число смертельных случаев прогрессивно увеличивалось. Самая зловещая черта этой эпидемии состояла в том, что она, по-видимому, дала толчок какому-то процессу, и теперь грипп с нами не расстается, или, как писал эпидемиолог Гринвуд «нам никак не удается вернуть утраченные позиции».

В 1918 году, после окончания первой мировой войны, разразилась небывалая пандемия гриппа, получившего название «испанки».

За полтора года пандемия охватила все страны, поразив более миллиарда человек. Болезнь протекала исключительно тяжело: около 25 миллионов человек погибло – больше, чем от ранений на всех фронтах первой мировой войны за четыре года.

Никогда позже грипп не вызывал столь высокой смертности: смертность была невысокой во время всех последующих эпидемий и пандемий, хотя процент смертных случаев при гриппе невысок, массовость заболевания приводит к тому, что во время каждой большой эпидемии гриппа от него умирают тысячи больных, особенно стариков и детей. Отмечено, что во время эпидемий резко повышается смертность от болезней лёгких, сердца и сосудов.

Читайте также:  Ветряная оспа мероприятия в детских дошкольных учреждениях

Грипп остаётся «королём» эпидемий. Ни одна болезнь не может за короткое время охватить сотни миллионов людей, а гриппом во время пандемии заболевает более миллиарда людей! Так было не только в памятную пандемию 1918 года, но сравнительно недавно – в 1957 году, когда разразилась пандемия «азиатского» гриппа, и в 1968 году, когда появился «гонконгский» грипп. Известно несколько разновидностей вируса гриппа – А, В, С, и др.; под воздействием факторов внешней среды их число может увеличится. В связи с тем, что иммунитет при гриппе кратковременный и специфичный, возможно неоднократное заболевание в один сезон. По статистическим данным, ежегодно болеют гриппом в среднем 20-35% населения.

Источником инфекции является больной человек; больные легкой формой как распространители вируса, наиболее опасны, так как своевременно не изолируются – ходят на работу, пользуются городским транспортом, посещают зрелищные места.

Инфекция передается от больного к здоровому человеку воздушно-капельным путем при разговоре, чихании, кашле или через предметы домашнего обихода.

Оспа – одно из древнейших заболеваний. Описание оспы нашли в египетском папирусе Аменофиса Ι, составленном за 4000 лет до нашей эры. Оспенные поражения сохранились на коже мумии, захороненной в Египте за 3000 лет до нашей эры. Упоминание оспы, которую китайцы назвали «ядом из материнской груди», содержится в древнейшем китайском источнике – трактате «Чеу-Чеуфа» (1120 год до нашей эры). Первое классическое описание оспы дал арабский врач Разес.

Оспа в прошлом была самым распространённым и самым опасным заболеванием. Её опустошительная сила не уступала силе чумы.

Первое упоминание об оспе в России относится к ΧV веку. В 1610 году инфекция была занесена в Сибирь, где вымерла треть местного населения. Люди бежали в леса тундры и горы выставляли идолов, выжигали на лице шрамы наподобие оспин, что бы обмануть этого злого духа, — всё было напрасно, ничто не могло остановить безжалостного убийцу.

Однако, попытки защититься от оспы столь же древни, как и сама оспа. В основе их лежало наблюдение: люди, однажды переболевшие оспой, больше не болели.

Первая вакцинация против оспы в России была проведена в торжественной обстановке профессором Московского университета Ефремом Мухиным в 1801 году. Ребёнку из воспитательного дома в Москве была привита оспа по дженнеровскому способу и в честь этого присвоена фамилия Вакцинов.

10 апреля 1919 года В. И. Ленин подписал декрет об обязательном оспопрививании, что положило начало массовым прививкам.

Полиомиелит — вирусное заболевание, при котором поражается серое вещество центральной нервной системы. Возбудитель полиомиелита — мелкий вирус, не имеющий внешней оболочки и содержащий РНК. Вирус полиомиелита поражает конечности, то есть изменяет формы костей. Характерные изменения костей были найдены при раскопках в Гренландии на скелетах, относящихся к 500-600 годам до нашей эры. Заболеваемость полиомиелитом отличается рядом характерных особенностей. Полиомиелит распространяется по типу кишечных заболеваний. При высоком уровне санитарии дети не заражаются в раннем возрасте, но инфицируются позже. Полиомиелит, как бы взрослеет, а у взрослых заболевание протекает значительно тяжелее. Эффективным методом борьбы с данным заболеванием является живая полиомиелитная вакцина. Применение поливакцины позволило эффективно гасить вспышки эпидемии инфекции, резко снизилась заболеваемость. Однако, вакцинация живой вакциной – это не ликвидация вируса – убийцы, а только замена его искусственно лабораторным штаммом, безопасным для человека.

Бешенство — инфекционное заболевание, передающееся человеку от больного животного при укусе или контакте со слюной больного животного, чаще всего собаки. Один из основных признаков развивающегося бешенства — водобоязнь, когда у больного затруднено глотание жидкости, развиваются судороги при попытке пить воду. Вирус бешенства содержит РНК, уложенную в нуклеокапсид спиральной симметрии, покрыт оболочкой и при размножении в клетках мозга образует специфические включения, по мнению некоторых исследователей, — “кладбища вирусов“, носящие название телец Бабеша-Негри. Заболевание неизлечимо.

Вирусный гепатит — инфекционное заболевание, протекающее с поражением печени, желтушным окрашивании кожи, интоксикацией. Заболевание известно со времен Гиппократа более 2-х тысяч лет назад. В странах СНГ ежегодно от вирусного гепатита гибнет 6 тыс. человек. Болезнь иначе называется – болезнь Боткина. Вирус гепатита обладает высокой устойчивостью. Он может годами сохраняться в высушенном материале при комнатной температуре, выдерживать кипячение в течение 30 минут и кратковременную обработку обычными дезинфицирующими средствами. Вирус длительное время сохраняется в воде и выделениях больного. Размножается он только в организме человека – это облигатный (обязательный) паразит человека. Эпидемический гепатит известен в двух формах: собственно инфекционный гепатит, передающийся от человека к человеку, как кишечная инфекция, и сывороточный гепатит, передающийся людям при проведении переливании крови, уколов и т. д. В 1888 году Боткин пришел к заключению, что «катаральная желтуха», так тогда называли вирусный гепатит, является самостоятельным инфекционным заболеванием. Сывороточный гепатит часто бывает у диабетиков, наркоманов и других людей, делающих себе инъекции, а также татуировки.

Опухолеродные вирусы — За годы, прошедшие с тех пор, как впервые был установлен факт возникновения вирусных сарком у кур, многочисленными исследователями у разных видов позвоночных были обнаружены онкогенные вирусы, принадлежащие к двум группам: ДНК — содержащие и ретровирусы. Среди онкогенных ДНК-вирусов есть паковавирусы, адековирусы и герпесвирусы. Из РНК-содержащих вирусов опухоли вызывают только ретровирусы.

Диапазон опухолей, вызываемых онкогенными вирусами, необычайно широк. Хотя вирус полиомы вызывает главным образом опухоли слюнных желез, уже само его название показывает, что он способен вызывать и многие другие опухоли. Ретровирусы вызывают главным образом лейкозы и саркомы, которые нередко бывают причиной опухолей молочной железы и ряда других органов. Хотя рак — это заболевание целого организма, анологичное по сути явление, называемое трансформацией, наблюдается и в культурах клеток. Такие системы используются в качестве моделей для изучения онкогенных вирусов. Способность трансформировать клетки in vitro лежит в основе методов количественного определения многих онкогенных вирусов. Эти же системы используются и для сравнительного изучения физиологии нормальных и опухолевых клеток.

Вирусы и злокачественные опухоли человека — Одним из аргументов против роли вирусов в возникновении большинства злокачественных опухолей у человека считается тот факт, что в подавляющем большинстве случаев злокачественные опухоли не заразны, тогда как при вирусной этиологии можно ожидать передачи от человека к человеку. Если, однако, допустим, что в возникновении опухолей играет роль активация наследуемых вирусов экзогенными факторами, то следует ожидать, что будут выявлены факты наследственного предрасположения к злокачественным опухолям. Такое предрасположение к развитию некоторых опухолей действительно обнаружено, но этому можно найти различные объяснения. Несмотря на 10 лет интенсивной работы, направляемой специальными правительственными программами, связь между злокачественными опухолями у человека и вирусами все еще остается проблематичной. Представляется в высшей степени странным, что онкогенные вирусы, которые играют столь очевидную роль в возникновении опухолей у самых разных животных, должны почему-то “обходить” человека.

СПИД — Синдром приобретенного иммунного дефицита — это новое инфекционное заболевание, которое специалисты признают как первую в известной истории человечества действительно глобальную эпидемию. Ни чума, ни черная оспа, ни холера не являются прецедентами, так как СПИД решительно не похож ни на одну из этих и других известных болезней человека. Чума уносила десятки тысяч жизней в регионах, где разражалась эпидемия, но никогда не охватывала всю планету разом. Кроме того, некоторые люди, переболев, выживали, приобретая иммунитет и брали на себя труд по уходу за больными и восстановлению пострадавшего хозяйства. СПИД не является редким заболеванием, от которого могут случайно пострадать немногие люди. Ведущие специалисты определяют в настоящее время СПИД как “глобальный кризис здоровья”, как первую действительно все земную и беспрецедентную эпидемию инфекционного заболевания, которое до сих пор по прошествии первой декады эпидемии не контролируется медициной и от него умирает каждый заразившейся человек.

СПИД к 1991 году был зарегистрирован во всех странах мира, кроме Албании. В самой развитой стране мира — Соединенных Штатах уже в то время один их каждых 100-200 человек инфицирован, каждые 13 секунд заражался еще один житель США и к концу 1991 года СПИД в этой стране вышел на третье место по смертности, обогнав раковые заболевания. Пока что СПИД вынуждает признать себя болезнью со смертельным исходом в 100% случаев.

Первые заболевшие СПИДом люди выявлены в 1981 году. В течении прошедшей первой декады распространение вирус-возбудителя шло преимущественно среди определенных групп населения, которые называли группами риска. Это наркоманы, проститутки, гомосексуалисты, больные врожденной гемофилии (так как жизнь последних зависит от систематического введения препаратов и донорской крови).

Однако к концу первой декады эпидемии в ВОЗ накопился материал, свидетельствующий о том, что вирус СПИД вышел за пределы названных групп риска. Он вышел в основную популяцию населения.

С 1992 года началась вторая декада пандемии. Ожидают, что она будет существенно тяжелее, чем первая. В Африке, например, в ближайшие 7-10 лет 25% сельскохозяйственных ферм останутся без рабочей силы по причине вымирания от одного только СПИДа.

СПИД — одно из важнейших и трагических проблем, возникших перед человечеством в конце 20 века. Возбудитель СПИДа — вирус иммунодефицита человека (ВИЧ) — относится к ретровирусам. Своим названием ретровирусы обязаны необычному ферменту — обратной транскриптазе (ретровертазе), которая закодирована в их геноме и позволяет синтезировать ДНК на РНК-матрице . Таким образом, ВИЧ способен продуцировать в клетках-хазяевах, таких как “хелперные” Т-4 — лимфоциты человека, ДНК-копии своего генома. Вирусная ДНК включается в геном лимфоцитов, где ее нахождение создает условия для развития хронической инфекции. До сих пор неизвестны даже теоретические подходы к решению такой задачи, как очистка генетического аппарата клеток человека от чужеродной (в частности, вирусной) информации. Без решения этой проблемы не будет полной победы над СПИДом.

Хотя уже ясно, что причиной синдрома приобретенного иммунодефицита (СПИД) и связанный с ним заболеваний является вирус иммунодефицита человека (ВИЧ), происхождение этого вируса остается загадкой. Есть убедительные серологические данные в пользу того, что на западном и восточном побережьях Соединенных Штатов инфекция появилась в середине 70-х годов. При этом случаи ассоциированных со СПИДом заболеваний, известных в центральной Африке, указывают на то, что там инфекция, возможно, появилась еще раньше (50-70 лет). Как бы то ни было, пока не удается удовлетворительно объяснить, откуда взялась эта инфекция. С помощью современных методов культивирования клеток было обнаружено несколько ретровирусов человека и обезьян. Как и другие РНК-содержащие вирусы, они потенциально изменчивы; поэтому у них вполне у них вполне вероятны такие перемены в спектре хозяев и вирулентности, которые могли бы объяснить появление нового патогенна (существует несколько гипотез: 1)воздействие на ранее существующий вирус неблагоприятных факторов экологических факторов; 2)бактериологическое оружие; 3)мутация вируса в следствии радиационного воздействия урановых залежей на предполагаемой родине инфекционного патогенна — Замбии и Заире).

Начать разговор о синдроме приобретенного иммунодефицита имеет смысл с краткого описания той системы организма, которую он выводит из строя, то есть системы иммунитета. Она обеспечивает в нашем теле постоянство состава белков и осуществляет борьбу с инфекцией и злокачественно перерождающимися клетками организма.

Как и всякая другая система, система иммунитета имеет свои органы и клетки. Ее органы — это тимус (вилочковая железа), костный мозг, селезенка, лимфатические узлы (их иногда неправильно называют лимфатическими железами), скопление клеток в глотке, тонком кишечнике, прямой кишке. Клетками иммунной системы являются тканевые макрофаги, моноциты и лимфоциты. Последние в свою очередь, подразделяются на Т-лимфоциты (созревание их происходит в тимусе, откуда и их название) и В-лимфоциты (клетки, созревающие в костном мозге).

Макрофаги имеют многообразные функции, они, например, поглощают бактерии, вирусы и разрушенные клетки. В-лимфоциты вырабатывают иммуноглобулины — специфические антитела против бактериальных, вирусных и любых других антигенов — чужеродных высокомолекулярных соединений. Макрофаги и В-лимфоциты обеспечивают гуморальный (от лат. humor — жидкость) иммунитет.

Так называемые клеточный иммунитет обеспечивают Т-лимфоциты. Их разновидность — Т-киллеры (от англ. — “убийца”) способны разрушать клетки, против которых вырабатывались антитела, либо убивать чужеродные клетки.

Сложные и многообразные реакции иммунитета регулируются за счет еще двух разновидностей Т-лимфоцитов: Т-хелперов (помощников), обозначаемых также Т4, и Т-супрессоров (угнетателей), иначе обозначаемых как Т8. Первые стимулируют реакции клеточного иммунитета, вторые угнетают их. В итоге обеспечивается нейтрализация и удаление чужеродных белков антителами, разрушение проникших в организм бактерий и вирусов, а также злокачественных переродившихся клеток организма, иначе говоря, происходит гармоническое развитие иммунитета.

Особенностью вируса иммунодефицита человека является проникновение в его в лимфоциты, моноциты, макрофаги и другие клетки, имеющие специальные рецепторы для вирусов и их разрушений, что приводит к разрушению всей иммунной систем. В результате чего организм утрачивает свои защитные функции и не в состоянии противостоять возбудителям различных инфекций и убивать опухолевые клетки. Средняя продолжительность жизни инфицированного человека составляет 7-10 лет.

Как происходит заражение? Источником заражения служит человек, пораженный вирусом иммунодефицита. Это может быть больной с различными проявлениями болезни, или человек, который является носителем вируса, но не имеет признаков заболевания (бессимптомный вирусоноситель).

СПИД передается только от человека к человеку: 1)половым путем; 2)через кровь, содержащую вирус иммунодефицита; 3)от матери к плоду и новорожденному.

ВИЧ не передается: ВИЧ не живет вне организма и не распространяется через обыкновенные бытовые контакты. Нет никакой опасности в ежедневном общении на работе, школе или дома. Нет опасности заразиться через рукопожатия, прикосновения или объятия. Нет никакой возможности заразиться в плавательном бассейне или туалете. Нет опасности от укусов комаров, москитов или других насекомых.

Меры профилактики. Основное условие — Ваше поведение!

1.Половые контакты — наиболее распространенный путь передачи вируса. Поэтому надежный способ предотвратить заражение — избегать случайных половых контактов, использование презерватива, укрепление семейных отношений.

2.Внутривенное употребление наркотиков не только вредно для здоровья, но и значительно повышает возможность заражения вирусом. Как правило, лица, вводящие внутривенные наркотики, используют общие иглы и шприцы без их стерилизации.

3.Использование любого инструмента (шприцы, катетеры, системы для переливания крови) как в медицинских учреждениях, так и в быту при различный манипуляциях (маникюр, педикюр, татуировки, бритье и т. д.) где может содержаться кровь человека, зараженного ВИЧ, требует их стерилизации. Вирус СПИДа не стойкий, гибнет при кипячении мгновенно, при 56С градусах в течении 10 минут. Могут быть применены и специальные дезрастворы. Спирт не убивает ВИЧ.

4.Проверка донорской крови обязательна.

Четырнадцать миллионов мужчин, женщин и детей инфицированы в настоящее время вирусом иммунодефицита человека, вызывающим СПИД. Ежедневно заражается еще более 5 тысяч человек и если не принимать срочные меры, к концу столетия число инфицированных достигнет 40 миллионов.

Напоминание о СПИДе: “Не погибни из-за невежества! — должно стать реальностью для каждого человека.

Кроме выше описанных болезней к вирусным заболевания также относятся ветряная оспа, инфекционный паротит, корь, краснуха и другие.

источник