Меню Рубрики

Пастер вакцина против оспы

Оспа — заразная болезнь, опасная тем, что передаётся от больного человека через телесный контакт или воздушно-капельным путём. К счастью, за два последних столетия мир победил большинство инфекций, считавшихся смертельно-опасными. Это случилось благодаря вакцинации. История прививки от оспы насчитывает более 180 лет.

Известно две разновидности видов оспы. Это ветряная и натуральная. И если первую можно считать относительно безобидной, то вторая (другое её название – чёрная) унесла множество жизней.

Ещё в средние века было замечено, что человек, переболевший оспой, в дальнейшем от неё уже не пострадает. Тогда и появилась идея специально заражать здоровых людей, так у человека было больше шансов пережить болезнь.

Под оспенной вакциной понимают лечебный предохранительный препарат, изготовленный из вируса коровьей оспы и осповакцины. Что касается вируса коровьей оспы, его получают из возбудителей на коже заражённого животного. Для получения штамма используют коров и овец, кроликов или куриные эмбрионы.

Животным через надрезы в коже втирают вирус, а спустя 5 дней, когда сформируются оспенные пустулы, умерщвляют. Затем гнойничковую сыпь соскабливают и размельчают. Полученную смесь называют оспенным детритом. Осповакцина представляет собой сложный многокомпонентный фермент, схожий с вирусом коровьей оспы.

Его происхождение до конца не выяснено. Считается, что этот вирус изменился в сторону ослабления в результате многократного прохождения через организм животных. Поэтому при вводе в организм человека он не может вызвать оспу, но формирует к ней иммунитет.

Человечество достаточно хорошо изучило оспу. Болезнь берёт начало на востоке, откуда она распространилась на европейский континент, Африку и Америку.

Смертность от чёрной оспы достигала в то время 70%. Так к концу 18 века Европа представляла собой один сплошной оспинный лазарет. Умершие исчислялись миллионами. У выживших людей на лицах оставались ужасные шрамы.

Заболевание опустошало целые города, и только всеобщая вакцинация остановила распространение эпидемии. Первая противооспенная вакцина была изобретена англичанином Э. Дженнером, врачом по образованию.

Он всю жизнь лечил доярок и заметил, что скотницы, контактирующие с больными животными (оспенные пузырьки были на вымени коров), имели небольшие шрамы на пальцах рук. Но эти щербинки быстро заживали.

А самое главное — женщины в будущем не болели натуральной оспой, из чего Дженнер сделал предположение, что заражение более лёгкой коровьей оспой спасает человека от оспы натуральной и решил проверить свои догадки.

Он взял гной из пузырька на руке скотницы и заразил ими 8-ми летнего мальчика через надрез на его коже. Спустя несколько дней у ребёнка начался жар, а на месте ранки сформировалась пустула.

Тем не менее, температура и прочие симптомы быстро прошли, а гнойник благополучно подсох. Спустя 6 недель Дженнер заразил мальчика уже штаммом вируса опасной чёрной оспы. Однако у ребёнка успел выработаться иммунитет, и он не заболел.

Так, в мае 1796 года была проведена первая в истории вакцинация (от латинского «vaccines» –коровий). А Дженнер сделал вывод, что материал, взятый от животного или человека, заражённого коровьей оспой, защищает в будущем от заболевания оспой натуральной. Нужно заметить, что попытки прививок от оспы были предприняты и до Дженнера.

Так, жители Китая и Индии, спасаясь от инфекции, практиковали заражение здоровых людей гноем оспенных больных. Привитый человек заболевал, но с лёгкой симптоматикой, образовывая на теле 20-30 гнойничков. Этот метод был назван «вариоляцией». «Variola» на латыни означает «оспа».

Но британский двор поддержал Дженнера. А в 1803 году, когда данные по успешной вакцинации подтвердились в нескольких странах, в Лондоне был учреждён институт оспопрививания, бессменным руководителем которого стал доктор Дженнер.

Что касается России, то здесь методика английского врача впервые была опробована только в 1801 году. В 20-ом столетии вакцинация уже активно практиковалась во всех странах.

Массовая вакцинация на сегодняшний день не проводится, поскольку с 1980 года инфекция считается полностью ликвидированной. Но и сейчас есть люди, профессия которых предполагает определённый риск заражения натуральной оспой.

Согласно постановлению Минздрава России, к группе риска относятся:

  • врачи-эпидемиологи (и их помощники) территориальных органов, подотчётных Роспотребнадзору;
  • старший и младший медперсонал инфекционных отделений и клиник, связанный с лабораторными исследованиями на ортопоксивирусы;
  • бригады скорой помощи, работающие в очаге инфекции: госпиталях и изоляторах, а также занятые эвакуацией больных и вакцинацией;
  • врачи-дезинфекционисты, медсёстры и санитарки вирусологических отделов дезинфекции и лабораторий.

В случае выявления очагов натуральной оспы на территории РФ обязательной вакцинации и ревакцинации подлежат:

  • перечисленные выше категории лиц независимо от результата и времени проведения предшествующей прививки;
  • лица, имевшие непосредственный контакт с больным с подозрением на оспу и его вещами.

Обязательная очередная ревакцинацию у перечисленных групп риска проводится через 5 лет.

На территории Российской Федерации на сегодняшний день существует 3 разновидности противооспенных вакцин для разных целей:

  • живая сухая (делается накожно);
  • мёртвая сухая (используется в случае 2-х этапной вакцинации);
  • живая эмбриональная (или ТЭОВак) в таблетированной форме.

Данная вакцина целесообразна для экстренного прививания. Причём для выработки иммунизирующей способности достаточно одной дозы. Штамм выращивают на кожном покрове телят. К полученному активному компоненту (живому вирусу) добавляют стабилизатор и растворитель-глицерин. Вакцина выпускается в виде ампул разной дозировки.

Инактивированные вакцины предназначены только людям, ранее не прививавшимся и имеющим возрастной риск к развитию поствакциональных осложнений. Для ревакцинации её не применяют.

Штамм данного вида вируса культивируют также на коже телят. Но затем живой компонент разрушают гамма-излучением. Полученную вакцину разбавляют физраствором. Производится в виде ампул.

Существует ещё один вид вакцины: оспенная эмбриональная или ТОЭВак. Здесь активным компонентом выступает живой вирус вакцины. Его выращивают в теле куриного эмбриона. Затем препарат высушивают, добавляют стабилизатор и специальные наполнители.

Далее прессуют в таблетки. Этот вид вакцины используется только для ревакцинации. Таблетки имеют сладковатый вкус с запахом ванилина. Одна штука соответствует одной дозе.

Противооспенные прививки делаются только с разрешения граждан. Им предварительно сообщается об особенностях вакцинального процесса и возможных осложнениях.

Если человек соглашается, он проходит тщательное медобследование на предмет возможных противопоказаний. Когда пациент не согласен на вакцинацию, он должен написать отказ в письменной форме, о чём будет сделана отметка в его медицинской карте.

Обязательно в день прививки человеку измеряют температуру. Если она повышена, процедура отменяется. Прививки проводятся в специально организованных пунктах или кабинетах с применением всей необходимой техники. Вакцинация осуществляется только медработниками, прошедшими специальную подготовку.

Дивергентную прививку проводят отдельными стерильными инструментами: оспопрививальным пером и 2-х зубцовой иглой. Место укола: наружная часть плеча с чистой кожей, без вакцинальных рубцов. Если всё сделано правильно, в месте накалывания появится слабое набухание краёв кожи.

При 2-х этапном методе вакцину вводят в 2 приёма. Сначала делается укол инактивированным препаратом. А через неделю вводится уже живой вирус. Если в этот срок уложиться не получается, повторную вакцинацию допускается сделать в течение последующих 2-х месяцев.

Дивергентная прививка проводится уже на другой руке. Это может быть 1 надрез с помощью оспопрививального пера или 5 уколов 2-х зубцовой иглой.

Выполненная прививка регистрируется в:

  • карте больного;
  • сертификате профилактических прививок установленного образца;
  • специальном журнале учёта.

Противопоказаний довольно много. Вакцинация исключается для:

  • беременных женщин и детей до 1 года;
  • при аллергии на любой компонент препарата;
  • если имеется ДЦП и болезнь Дауна;
  • при дерматитах и артритах;
  • в случае любых онкологий;
  • при бронхиальной астме;
  • ВИЧ- инфекции;
  • при нефропатиях и др.

При ряде болезней прививку сделать можно, если состояние больного улучшилось, а врач дал своё согласие. Сюда относится:

  • сахарный диабет;
  • болезни сердца;
  • астма;
  • нарушения кожного покрова;
  • хроническая пневмония;
  • психические заболевания и др.

Шрам после оспенной прививки будет обязательно, но это не страшно. Печально, что вакцинация может дать осложнения. Это случается, если у прививаемого лица вовремя не были выявлены различного рода иммунологические дефициты, хронические патологии или аллергии.

  • вакцинальная экзема;
  • прогрессирующая вакциния;
  • поствакцинальный энцефалит;
  • генерализованная вакциния;
  • полирадикулоневрит.

И хотя тяжёлые воспаления после оспенной прививки крайне редки, их лечением и профилактикой должен заниматься только специалист.

Врачи-инфекционисты в последнее время отмечают рост популярности вакцинации от ветряной оспы, особенно среди детей. Эта прививка не грозит летальным исходом и переносится довольно легко, а карантинный период довольно короток. Родители отмечают, что эффективность прививки высока, если её применить в первые 2 дня. Большинство отзывов — за проведение вакцинации.

Несет ли реальную опасность вакцинация? Ответ в видео:

Человечество сумело победить оспу навсегда. Но существуют и другие опасные инфекции, которые могут проявиться в любой момент. Поэтому так важны прививки – главный фактор в борьбе с глобальными вирусами.

источник

1796 год стал переломным в истории вакцинации, и связан он с именем английского врача Э. Дженнера. Во время практики в деревне Дженнер обратил внимание, что фермеры, работающие с коровами, инфицированными коровьей оспой, не болеют натуральной оспой. Дженнер предположил, что перенесенная коровья оспа является защитой от человеческой, и решился на революционный по тем временам эксперимент: он привил коровью оспу мальчику и доказал, что тот стал невосприимчивым к натуральной оспе – все последующие попытки заразить мальчика человеческой оспой были безуспешными. Так появилась на свет вакцинация (от лат. vacca – корова), хотя сам термин стал использоваться позже. Благодаря гениальному открытию доктора Дженнера была начата новая эра в медицине. Однако лишь спустя столетие был предложен научный подход к вакцинации. Его автором стал Луи Пастер.

В 1880 году Пастер нашел способ предохранения от заразных заболеваний введением ослабленных возбудителей. Французский ученый Луи Пастер стал человеком, который совершил прорыв в медицине (и иммунологии, в частности). Он первым доказал, что болезни, которые мы сегодня называем инфекционными, могут возникать только в результате проникновения в организм микробов из внешней среды. В 1880 году Пастер нашел способ предохранения от заразных заболеваний введением ослабленных возбудителей, который оказался применимым ко многим инфекционным болезням. Пастер работал с бактериями, вызывающими куриную холеру. Он концентрировал бактериальные препараты настолько, что их введение даже в ничтожных количествах вызывало гибель кур в течение суток. Однажды, проводя свои эксперименты, Пастер случайно использовал культуру бактерий недельной давности. На этот раз болезнь у кур протекала в легкой форме, и все они вскоре выздоровели. Ученый решил, что его культура бактерий испортилась и приготовил новую. Но и введение новой культуры не привело к гибели птиц, которые выздоровели после введения им «испорченных» бактерий. Было ясно, что инфицирование кур ослабленными бактериями вызвало появление у них защитной реакции, способной предотвратить развитие болезни при попадании в организм высоковирулентных микроорганизмов.

Если вернуться к открытию Дженнера, то можно сказать, что Пастер привил «коровью оспу» для того, чтобы предотвратить заболевание обычной «оспой». Отдавая долг первооткрывателю, Пастер также назвал открытый им способ предупреждения инфекционной болезни вакцинацией, хотя, конечно же, никакого отношения к коровьей оспе его ослабленные бактерии не имели.

«Думать, что открыл важный факт, томиться лихорадочной жаждой сообщить о нём и сдерживать себя днями, неделями, годами, бороться с самим собой и не объявлять о своём открытии, пока не исчерпал всех противоположных гипотез – да, это тяжёлая задача»

В 1881 году Пастер произвел массовый публичный опыт, чтобы доказать правильность своего открытия. Он ввел нескольким десяткам овец и коров микробы сибирской язвы. Половине подопытных животных Пастер предварительно ввел свою вакцину. На второй день все невакцинированные животные погибли от сибирской язвы, а все вакцинированные – не заболели и остались живы. Этот опыт, протекавший на глазах у многочисленных свидетелей, был триумфом ученого.

В 1885 году Луи Пастером была разработана вакцина от бешенства – заболевания, которое в 100% случаев заканчивалось смертью больного и наводило ужас на людей. Дело доходило до демонстраций под окнами лаборатории Пастера с требованием прекратить эксперименты. Ученый долго не решался испробовать вакцину на людях, но помог случай. 6 июля 1885 года в его лабораторию привели 9-летнего мальчика, который был настолько искусан, что никто не верил в его выздоровление. Метод Пастера был последней соломинкой для несчастной матери ребенка. История получила широкую огласку, и вакцинация проходила при собрании публики и прессы. К счастью, мальчик полностью выздоровел, что принесло Пастеру поистине мировую славу, и в его лабораторию потянулись пострадавшие от бешеных животных не только из Франции, но и со всей Европы (и даже из России).

«Думать, что открыл важный факт, томиться лихорадочной жаждой сообщить о нём и сдерживать себя днями, неделями, годами, бороться с самим собой и не объявлять о своём открытии, пока не исчерпал всех противоположных гипотез – да, это тяжёлая задача»

С тех пор появилось более 100 различных вакцин, которые защищают от сорока с лишним инфекций, вызываемых бактериями, вирусами, простейшими.

источник

Два столетия назад вакцинация стала спасением для миллионов людей во время страшной эпидемии оспы. Дэйли Бэби подготовили для вас материал с интересными фактами об истории прививок.

Термин вакцинации — от латинского Vacca — «корова» —в конце 19 века ввёл в обиход Луи Пастер, который отдал должное уважение своему предшественнику — английскому доктору Эдварду Дженнеру. Доктор Дженнер в 1796 году впервые провел вакцинацию по своему методу. Заключался он в том, что биоматериалы брали не от человека, который болел “натуральной” оспой, а от доярки, которая заразилась неопасной для человека “коровьей” оспой. То есть неопасное могло защитить от более опасной инфекции. До изобретения этого метода часто вакцинация заканчивалась смертью.

Прививаться от оспы, эпидемии которой иногда забирали жизни целых островов, придумали ещё в древности. Например, в 1000 году н.э. упоминания о вариоляции — введении группе риска содержимого оспенных пузырьков — были в аюрведических текстах в Древней Индии.

А в древнем Китае таким способом начали защищаться ещё в 10 веке. Именно Китаю принадлежит первенство метода, когда сухие струпья оспенных болячек давали вдыхать здоровым людям во время эпидемии. Такой метод был опасен тем, что, когда люди брали материал у больных оспой, они не знали, как проходит болезнь: в лёгкой или тяжёлой степени. Во втором случае привитые могли умереть.

Наблюдая за здоровьем доярок, доктор Эдвард Дженнер заметил, что они не болеют «натуральной» оспой. А если и заражаются, то переносят в лёгкой форме. Врач внимательно изучал метод вакцинации, который в начале века привезла в Англию из Константинополя супруга английского посла Мэри Уортли Монтегю. Именно она в начале 18 века привила своих детей, а потом заставила привить себя, короля и Королёву Англии с их детьми.

И, наконец, в 1796 году доктор Эдвард Дженнер привил восьмилетнего Джеймса Фиппса. Он втер ему в царапину содержимое оспенных пустул, которые появились на руке у доярки Сарры Нелсис. Через полтора года мальчику был привита настоящая оспа, но пациент не заболел. Процедуру повторяли два раза, и результат всегда был успешным.

Не все приняли этот метод борьбы с эпидемиями. Особенно против было, как всегда, духовенство. Но жизненные обстоятельства заставляли все чаще использовать метод доктора Дженнера: стали прививаться солдаты армии и флота. В 1802 году британский парламент признал заслуги доктора и наградил его 10 тысячами фунтов, а через пять лет — еще 20 000. Его достижения признали по всему миру и Эдвард Дженнер был при жизни принят в почетные члены различных научных обществ. А в Великобритании было организовано Королевское Дженнеровское общество и Институт оспопрививания. Дженнер стал его первым и пожизненным руководителем.

В нашу страну вакцинация также пришла из Англии. Не первыми, но самыми именитыми привитыми оказались императрица Екатерина Великая и ее сын Павел. Вакцинацию проводил английский доктор, который взял биоматериал у мальчика Саши Маркова — впоследствии тот стал носить двойную фамилию Марков-Оспенный. Через полвека, в 1801 году, с лёгкой руки императрицы Марии Фёдоровны появилась фамилия Вакцинов, которую дали мальчику Антону Петрову — первому привитому в России по методу доктора Дженнера.

Вообще историю оспы в нашей стране можно изучать по фамилиям. Так, до начала 18 века письменных упоминаний об оспе в нашей стране не было, но фамилии Рябых, Рябцев, Щедрин («рябой») говорят как раз о том, что болезнь существовала, как и везде, с древнейших времён.

После Екатерины II вакцинация стала модной, благодаря примеру августейшей особы. От оспы прививались даже те, кто уже переболел и приобрёл иммунитет от этой болезни. С тех пор прививки от оспы проводились повсеместно, но обязательными стали только в 1919 году. Именно тогда число заболевших снизилось со 186 000 до 25 000. А в 1958 году на Всемирной Ассамблее здравоохранения Советским союзом была предложена программа по абсолютному устранению оспы в мире. В результате этой инициативы с 1977 года не было зарегистрировано ни одного случая заболевания оспой.

Огромный вклад в изобретение новых вакцин и науку внёс французский ученый Луи Пастер, имя которого дало название методу обеззараживания продуктов — пастеризации. Луи Пастер рос в семье кожевника, хорошо учился, имел талант к рисованию, и если бы не увлечение биологией, мы могли бы иметь великого художника, а не ученого, которому мы обязаны излечением от бешенства и сибирской язвы.

© Картина Альберта Эдельфельта «Луи Пастер»

В 1881 году он продемонстрировал обществу действие прививки против сибирской язвы на овцах. Также он разрабатывал прививку против бешенства, но опробовать ее ему помог случай. 6 июля 1885 году к нему как к последней надежде привели мальчика. Его покусала бешеная собака. На теле ребёнка было найдено 14 укусов, он был обречён умереть в бреду от жажды, будучи парализованным. Но через 60 часов после укуса ему ввели первый укол от бешенства. Во время вакцинации мальчик жил в доме ученого, а 3 августа 1885 года, почти через месяц после укуса, вернулся домой здоровым ребёнком — после введения 14 уколов он так и не заболел бешенством.

После этого успеха в 1886 году во Франции была открыта Пастеровская станция, где прививали от холеры, сибирской язвы и бешенства. Примечательно то, что 17 лет спустя Жозеф Мейстер — первый спасённый мальчик — устроился сюда вахтёром. А в 1940 году покончил жизнь самоубийством, отказавшись от требования гестапо вскрыть гробницу Луи Пастера.

Луи Пастером также открыт метод ослабления бактерий для изготовления вакцин, поэтому мы обязаны учёному не только вакцинами против бешенства и сибирской язвы, но и будущими вакцинам, которые, возможно, спасут нас от смертельных эпидемий.

В 1882 году Роберт Кох выделил бактерию, которая является причиной развития туберкулеза, благодаря ему в будущем появилась прививка БЦЖ.

В 1891 году врач Эмиль фон Беринг спас ребёнку жизнь, сделав первую в мире прививку от дифтерии.

В 1955 году вакцина Джонаса Солка против полиомиелита была признана эффективной.

А в 1981 году стала доступной прививка против гепатита В.

В настоящее время нам известны 30 прививок от инфекционных заболеваний. На этом наука не останавливается. И хоть сейчас все больше появляется людей, которые отказываются от прививок, их значение переоценить нельзя. Благодаря им целые города не вымирают от оспы; дети переносят без последствий коклюш и корь; мы забыли, что такое полиомиелит, а главное — защищаем наших детей от опасных болезней и их последствий.

источник

К началу 1870-х Луи Пастер уже совершил львиную долю своих медицинских открытий. За прошедшие 30 лет он внес значительный вклад в открытие микробной теории своими работами в области ферментации, пастеризации, спасения шелкопрядильной промышленности и окончательного развенчания теории самопроизвольного зарождения жизни.

К началу 1870-х Луи Пастер уже совершил львиную долю своих медицинских открытий. За прошедшие 30 лет он внес значительный вклад в открытие микробной теории своими работами в области ферментации, пастеризации, спасения шелкопрядильной промышленности и окончательного развенчания теории самопроизвольного зарождения жизни.

Но в конце 1870-х Пастера ждало еще одно эпохальное открытие, поводом к которому послужил на этот раз довольно зловещий подарок: куриная голова. Нет, это была не угроза и не жестокая шутка. Курица умерла от птичьей холеры — серьезного инфекционного заболевания, разгул которого уничтожал до 90% куриного поголовья в стране.

Ветеринар, приславший Пастеру куриную голову, полагал, что болезнь вызвана специфическим микробом. Вскоре ученый подтвердил его теорию: взяв образец с мертвой куриной головы, он вырастил в лаборатории аналогичную микробную культуру и ввел ее здоровым курицам. Те вскоре умерли от птичьей холеры. Это послужило еще одним подтверждением состоятельности микробной теории, но выращенная Пастером болезнетворная культура вскоре сыграла в истории намного более важную роль. В этом ей помогли рассеянность ученого и счастливая случайность.

Летом 1879 г. Пастер отправился в долгую поездку, совершенно забыв об оставленной в открытой пробирке в лаборатории культуре птичьей холеры. Вернувшись из поездки, он ввел эту культуру нескольким курицам и обнаружил, что вирус во многом утратил свои смертоносные свойства: птицы, которым ввели ослабленные, или аттенуированные, бактерии, заболели, но не умерли.

Однако вслед за этим Пастера ждало еще более важное открытие. Он подождал, когда курицы оправятся от болезни, ввел им смертельные бактерии птичьей холеры и обнаружил, что теперь они совершенно невосприимчивы к заболеванию.

Пастер немедленно осознал, что открыл новый способ изготовления вакцин: введение ослабленных бактерий наделяло организм способностью сражаться и с активными смертельными формами.

Обсуждая это открытие в 1881 г. в своей статье, напечатанной в журнале The British Medical Journal, Пастер писал:

«Мы затронули основной принцип вакцинации. Переболев вирусом в ослабленной форме, птицы затем не пострадали и после заражения вирулентным вирусом, и оказались надежно защищены от птичьей холеры».

Вдохновившись этим открытием, Пастер начал исследовать возможности применения нового подхода в изготовлении вакцин от других болезней. Его следующий успех был связан с сибирской язвой.

Это заболевание наносило серьезный урон сельскому хозяйству, унося жизни 10-20% поголовья овец. Ранее Роберт Кох уже доказал, что сибирскую язву вызывают бактерии. Пастер хотел выяснить, можно ли ослабить их, сделать безвредными, но так, чтобы они сохранили способность стимулировать защитные силы организма, в который будут введены в виде вакцины.

Он добился нужного результата, выращивая бактерии при повышенной температуре. Когда некоторые современники усомнились в его находках, Пастер решил доказать свою правоту, поставив весьма эффектный публичный эксперимент.

5 мая 1881 г. Пастер ввел 25 овцам свою вакцину — новый ослабленный вирус сибирской язвы. 17 мая он снова ввел им более вирулентный, но все еще ослабленный вирус. Наконец, 31 мая он ввел смертоносные бактерии сибирской язвы 25 привитым овцам и еще 25 непривитым. Через два дня толпа зрителей, среди которых были члены парламента, ученые и репортеры, собралась посмотреть, чем закончится эксперимент. Итог говорил сам за себя: из привитой группы умерла лишь одна беременная овца, из непривитой же 23 умерли и две были близки к смерти.

Но, возможно, самым знаменитым достижением Пастера в этой области стало открытие антирабической вакцины (против бешенства) — первой его вакцины, предназначенной для человека. В то время бешенство было страшной болезнью и неизменно заканчивалось смертью.

Причиной заболевания обычно становился укус бешеной собаки, а методы лечения были один другого ужаснее: больному в рану предлагали ввести длинную раскаленную иглу или посыпать место укуса порохом и поджечь. Никто не знал, что именно вызывает бешенство: болезнетворный вирус был слишком мал для тогдашних микроскопов, и его нельзя было вырастить в виде отдельной культуры.

Но Пастер все же был убежден, что болезнь возбуждает какой-то микроорганизм, поражающий центральную нервную систему. Чтобы создать вакцину, Пастер культивировал неизвестного возбудителя в мозге кролика, ослабил его, высушив фрагменты ткани, и использовал их для изготовления вакцины.

Первоначально Пастер не собирался испытывать экспериментальную вакцину на человеке, однако 6 июля 1885 г. ему пришлось изменить свое решение. В тот день к нему доставили девятилетнего Джозефа Мейстера со следами 14 укусов бешеной собаки на теле. Мать мальчика умоляла Пастера о помощи, и, сдавшись под ее напором, тот согласился ввести ребенку новую вакцину. Курс лечения (13 инъекций за 10 дней) оказался успешным, мальчик выжил.

После этого, хотя введение смертельного агента человеку и вызвало в обществе протесты, в течение 15 месяцев прививку от бешенства получили еще 1500 человек.

Итак, всего за восемь лет Луи Пастер не только совершил первый крупный прорыв в истории вакцинации со времен Дженнера, открыв способы аттенуации вирусов, но и создал эффективную вакцину против птичьей холеры, сибирской язвы и бешенства.

Однако в его передовой работе скрывался еще один неожиданный поворот: дело было не только в снижении вирулентности вирусов.

Как позже понял Пастер, вирусы, из которых состояла его антирабическая вакцина, были не просто ослабленными, а погибшими.

Именно в этом заключалось зерно следующего великого открытия.

источник

Пастер создает новые методы и новые вакцины

Бешенство — роковое заболевание, от которого не было спасения. Каждому человеку, укушенному бешеным животным, грозила неминуемая смерть. До получения Пастером вакцины против бешенства из каждых 100 человек, укушенных и заболевших бешенством, погибали все 100. Пастеровские прививки явились поистине величайшим благодеянием для всех тех, кому угрожала гибель от бешенства. Идеей Пастера являлось использование микробов против микробов. Это была простая, но поистине гениальная идея. Он прекрасно знал о вакцине Дженнера, высоко ценил это великое открытие и мужество Дженнера в борьбе за него. Вместе с тем коровья оспа была безопасной для человека. Пастер же имел дело с вирулентными микробами, способными вызвать заболевание и смерть. Такой страшной вирулентностью обладали возбудители бешенства, гнездившиеся в мозгу бешеных животных, с которыми Пастеру пришлось экспериментировать. Задача была очень сложной: возбудитель бешенства еще даже не был открыт.

Как ослабить страшные и различные по своей природе микробы? Цель была одна, но пути оказались разными. Возбудителя куриной холеры Пастеру удалось ослабить методом старения, длительное время выдерживая культуру на искусственной питательной среде. Правда, помог счастливый случай, но, как говорил Пастер, «счастливый случай является только тем, кто все делает, чтобы его встретить». Началом послужили наблюдения над возбудителями куриной холеры. Изучая особенности., этих микробов, Пастер установил силу их болезнетворных свойств. В определенной дозе они закономерно убивали кур. Но вот однажды, сделав перерыв в своих исследованиях и уехав отдыхать на лето, Пастер оставил культуру куриной холеры в лаборатории. Возвратившись осенью, он продолжал свои исследования, но убедился; что культура резко изменилась. Дозы, даже во много раз большие, оказались несмертельными для кур.

Можно было признать опыты неудачными, старую культуру выбросить и все начинать сначала, но ученый этого не сделал. Неужели время привело к изменению вирулентности культуры и потому микробы, постарев, стали безвредными? Какое действие они будут оказывать на кур? Ученый решил попробовать заразить свежей вирулентной культурой тех кур, которым были введены эти ослабленные микробы, и посмотреть, что произойдет.

Введя курам смертельную дозу микробов куриной холеры, Пастер убедился, что все куры остались живы и здоровы. Для проверки этой свежей культуры, т. е. для контроля, он ввел такую же смертельную дозу курам, не получившим предварительно ослабленных микробов. Надо было проверить вирулентность микробов. Все контрольные куры погибли. И вот ученый приходит к важному выводу, что ослабленные микробы предохранили кур от смерти. Значит, у них создан иммунитет. Следовательно, ослабление микробов и есть путь для создания предохранительных прививок против заразных болезней. Пастер сделал свой важный вывод, положивший начало его учению об аттенуации, т. е. ослаблении микробов, и созданию из них живых вакцин[7].

Так микробы убивающие превращены были в микробов защищающих. Идея использования микробов против микробов получила свое первое подтверждение. Идя этим путем, Пастер создает из ослабленных сибиреязвенных бацилл новую живую вакцину против сибирской язвы. Но это не было простым копированием первого открытия, использование метода «старения». Понадобились поиски новых методов ослабления микробов. Они дали не менее замечательные результаты.

Ослабления сибиреязвенных бацилл Пастер добился, выращивая их при более высокой температуре, чем обычно. Если болезнетворные микробы хорошо растут при температуре человеческого тела (+36–37 °C), то, Культивируя сибиреязвенные бациллы при +42 °C или +43 °C, он изменил их биологические свойства и снизил вирулентность.

Создавая вакцину против бешенства, Пастер, хотя это был конец XIX в., оказался в таком же положении, в каком был Дженнер в конце XVIII в. Чистой культуры вируса бешенства Пастер не имел. Он вынужден был пользоваться мозгами зараженных бешенством животных. Работа была трудная и опасная для жизни ученого и его учеников, но это не остановило их. Они творили во имя спасения жизней тысяч людей. Они хорошо знали, что люди, укушенные бешеными животными, неизбежно погибали. Еще никому в мире не удавалось спасти человека от этой болезни. Смерть была неотвратимой, а мучения — ужасными. Заканчивался XIX в., но и он не ; принес ничего утешительного. В сущности, было известно совсем немного: почему возникает бешенство и как тяжело оно протекает у человека. Знали, что болезнь заразная, но какой микроб его вызывает — оставалось тайной. Где гнездится возбудитель у бешеных животных, как происходят поражения в организме — снова тайны… Как же их раскрыть? Как спасти обреченных людей?

Наука пока не могла ответить на эти вопросы. Шли неустанные поиски. Французский профессор Галтье считал бешенство болезнью нервной системы неизвестного происхождения. Но и это уже было очень важно. Центральная нервная система действительно поражается, но знание этого мало еще помогало в предупреждении и лечении бешенства.

В России известный врач Д. С. Самойлович пытался помочь несчастным обреченным людям. Это был талантливый ученый, чьи труды были высоко оценены рядом академий Европы. Он рекомендовал ртуть для приема внутрь и смазывания ртутной мазью раны после укуса. Он предлагал также отсасывать яд ртом после укуса.

Но наука все еще была бессильной. Никто не умел ни лечить, ни предупреждать бешенство. Такими были печальные итоги к тому времени, когда Луи Пастер взялся за разрешение этой трудной задачи.

Вот одна из картин будничной работы Пастера по изучению бешенства.

Здание института, где работает великий ученый. В лабораториях идут напряженные исследования. Да и тишина здесь кажущаяся. Со двора института, где вдоль стены стоят большие железные клетки, днем и ночью раздается вой собак. Мороз по коже пробирает от этого дикого воя.

Во дворе института собрались ученики Пастера и среди них Э. Ру и Ш. Шамберлан, беззаветно преданные своему великому учителю. Тут же и дюжие служители с железными крючьями в руках. В клетках собаки. Одни лежат без движения — у них паралитическая форма бешенства, они погибают. Другие рвутся и воют. К ним впускают здоровых собак, на которых набрасываются бешеные. Искусанные, они становятся новыми жертвами эксперимента, ведь надо всегда иметь под руками бешеных животных. Это был простой способ обеспечить исследования, но он давал и прямые доказательства заразной природы бешенства. Итак, бешенство передается через укус. Из этого можно было предположить, что возбудитель бешенства находится во рту, точнее в слюне. С этого надо начинать.

Пастер вставлял в пасть бешеной собаки стеклянную трубочку, чтобы набрать для исследования немного слюны, и ртом высасывал пену, бившую изо рта животного, корчившегося в мучениях. Это были опыты лицом к лицу со смертью, ибо изо рта бешеных собак действительно смотрела смерть, борьба с которой еще только начиналась. Смерть витала, если — можно так сказать, на кончике пипетки, которую экспериментатор брал в рот, чтобы насосать слюну. Только маленький комочек ваты защищал от возможного попадания слюны бешеного животного ученому в рот. Ну а неожиданный укус? Это были не только опыты, но и борьба со смертью.

Пастеру и его ученикам хорошо было известно, что в случае заражения им угрожало заболевание и неизбежная смерть. Но ученые упорно продолжали опыты. Они, правда, как и многие ученые после них, не обнаружили возбудителя бешенства в слюне. Гораздо позже он был найден в мозгу. Не зная возбудителя, они все же победили. Вакцина Пастера против бешенства была получена. Она спасает от бешенства. Она спасает от смерти.

Как же она была создана? В чем заключался метод? Какими путями шли ученые?

Прежде всего Пастер был уверен, что надо использовать свой метод ослабления возбудителя. В письме к Р. Коху Пастер писал, что вполне уверен в том, что метод понижения вирулентности вируса окажет большую пользу человечеству в борьбе с угрожающими ему болезнями.

«Но старые мои методы вряд ли будут мне полезны, — думал Пастер, — ведь создавая вакцины, я имел дело с чистыми культурами микробов. А сейчас? Я могу использовать лишь те органы и ткани, в которых гнездится возбудитель бешенства. С чего начать? Как получить экспериментальное бешенство у животных? Ведь для изучения его всегда надо иметь под руками больных животных. Практика подсказала метод, в сущности, очень простой. Достаточно было бросить бешеную собаку в клетку к здоровым, чтобы, покусанные, они заболели бешенством. Можно было ввести шприцем в кожу животных слюну бешеной собаки и таким путем также получить заболевание».

Такие методы допускали возможность заражения животных, но они были недостаточно надежными для экспериментов. Одни собаки заболевали после инкубационного периода[8] в 14 дней, другие — через 60 дней, третьи — через несколько месяцев после заражения. Были собаки, которые совсем не заболевали. По-видимому, в тех каплях слюны, которые попадали в рану, возбудителей бешенства не оказывалось. Таким образом, возникновение бешенства зависело от количества возбудителя, попадавшего в рану, от его вирулентности, от обширности и глубины ран при укусах, от места укусов и свойств организма, в который попадал вирус бешенства, а также от многих других причин.

То, что было известно Пастеру о поражении нервной системы при бешенстве, натолкнуло его на мысль использовать мозг больного животного. Но будет ли мозг бешеных животных более надежным материалом для экспериментов, чем слюна? Куда вводить его, чтобы вызвать закономерное возникновение экспериментального бешенства? Обязательно ли нужно заражать собак или можно пользоваться другими, более удобными лабораторными животными, например кроликами? Как добиться постоянства силы возбудителя, чтобы при определенной дозе вызывать бешенство через определенное количество дней? Ведь если нет культуры микробов бешенства, надо, чтобы материал для опытов, т. е. мозг зараженных животных, содержал вирус всегда определенной силы. Эти и многие другие вопросы требовали разрешения. Опыт подсказывал, что растертый мозг в виде взвеси в бульоне или физиологическом растворе можно вводить под кожу или, что еще лучше, непосредственно в мозг. Но как это сделать? Химик по образованию, Пастер опасался, что такое грубое вмешательство в мозг грозит параличом и гибелью животных, и был против такого метода. Работа зашла в тупик. Судьба величайшего открытия висела на волоске.

Но ближайший помощник Пастера, врач по образованию, Э. Ру нашел выход.

В своих воспоминаниях Н. Ф. Гамалея так описывает это важное в истории науки событие: «…на помощь Пастеру пришли знания и несравненная техника Ру, единственного врача среди них. Ру выработал для этого надежную экспериментальную методику: при по мощи трепана[9] вырезывается кусочек из теменной кости животного и через образовавшееся отверстие под твердую оболочку вводится несколько капель взвеси из продолговатого мозга бешеного животного. Этим способом, во-первых, достигались всегда одинаковые результаты, кроме того, он оказался надежным для постановки диагноза бешенства, которое не оставляет типичных изменений на трупе». Итак, метод заражения был найден. Это помогло решить многие вопросы, стоявшие перед исследователями.

Годы упорного труда понадобились для того, чтобы неизвестный так называемый уличный вирус[10] бешеного животного превратить в вирус фиксированный, т. е. обладающий более определенной вирулентностью. Этого Пастер добился путем длительных перевивок — пассажей от одного животного другому. Для опытов были избраны кролики.

Читайте также:  Ветряная оспа пиодермия у взрослых

Заражая кроликов мозгом бешеного животного, Пастер вначале вызывал бешенство у них через 12–20 дней. Продолжая заражения (пассажи), но уже от кролика кролику, используя головной и спинной мозг бешеных кроликов для очередного заражения, Пастер добился через 100 пассажей сокращения инкубационного периода до 6 дней. В дальнейших многочисленных перевивках заразительность возбудителя бешенства стабилизировалась, т. е. стала устойчивой, поэтому экспериментальное бешенство у кроликов наступало обычно на 5-6-й день после заражения.

Это явилось первым и важным достижением на пути к поставленной цели. Укорочением скрытого периода ученые добились резкого усиления возбудителя бешенства у кроликов. Устойчивость же инкубационного периода свидетельствовала об устойчивости силы вируса, о «фиксации его свойств», по словам Л. Пастера.

Итак, материал для поисков вакцины был уже в руках. Пусть это не была чистая культура микроба, выращенная на искусственной питательной среде в стеклянной пробирке, но культура вируса, образно говоря, в «биологической пробирке» — мозгу. Этот лабораторный фиксированный вирус большой силы мог вызывать бешенство и у человека. Конечно, не могло быть и речи об использовании его в таком виде в качестве вакцины для прививки людям.

Но как применить принцип аттенуации к вирусу бешенства, заключенному в головном или спинном мозгу кроликов? Как его ослабить и чем? Неимоверно настойчивый труд, фантастически сложные эксперименты, неотступное раздумье и упорное стремление к цели принесли победу.

Методом ослабления Пастер и его ученики избрали высушивание. Оказалось, что мозг больного кролика, высушенный в банке над едким кали в продолжении 14 дней, терял свою заразительность. Мозг же 1-2-дневной сушки был достаточно сильным, чтобы вызвать бешенство даже при обычной инкубации. При 5-6-дневной сушке вирулентность зараженного мозга заметно ослабевала — , и если вызывала бешенство, то после удлиненной инкубации.

Так Пастер разрешил одновременно несколько вопросов. Во-первых, был найден объект для экспериментов — мозг бешеных животных; во-вторых, доказана связь между ослаблением возбудителя и длиной инкубационного периода; в-третьих, сушка мозга больного животного различной длительности приводила к обезвреживанию вируса, но в разной степени.

Все это позволило Пастеру рассматривать высушенный мозг кроликов как ослабленную живую вакцину и приступить к опытам предохранения животных от бешенства. Ведь предстояло предохранять от бешенства людей. Метод должен быть безопасным, и проверить его надо было на животных.

Опыты проводились на собаках и кроликах. Опасность введения маловысушенного мозга была очевидной. Значит, надо было создавать иммунитет против бешенства постепенно и осторожно. Зная, что 14-дневная сушка давала максимальную степень безопасности, мозг применяли для первой прививки, затем продолжали последовательно вводить эмульсию мозга 13-, 12-, 11-дневной сушки и т. д., вплоть до 1-2-дневной. Животные оставались живыми и здоровыми. Такая система прививок уже сама по себе свидетельствовала о безопасности и эффективности их. Ведь мозг 1-2-дневной сушки и даже 5-6-дневной был заразен для невакцинированных животных. Почему же не заболевали животные, которым сделали всю серию прививок, начиная с мозга 14-дневной сушки? Для Пастера и его учеников стало ясным, что это результат вакцинации ослабленным возбудителем, но нужны были доказательства и доказательства. Требовалась генеральная проверка. Заключалась она в том, что подопытных, т. е. вакцинированных, животных надо было заразить большой, заведомо смертельной дозой мозга, а для проверки такую же дозу ввести контрольным невакцинированным животным.

Опыты были поставлены на собаках и дали совершенно изумительные результаты. В то время как все контрольные животные после обычного инкубационного периода заболели и погибли при явлениях типично протекающего бешенства, все вакцинированные собаки выжили и были совершенно здоровы.

Докладывая об этих опытах, Пастер говорил, что вакцинированным собакам можно вводить вирус бешенства под кожу и даже на поверхность мозга с помощью трепанации, и бешенство не проявляется. Применяя этот метод, он получил невосприимчивость к бешенству у собак различных возрастов и пород, причем не было ни одной неудачи.

Опыты многократно повторялись не только Пастером, но и другими учеными во многих странах мира. Это был блестящий, невиданный успех. Но, пока только в эксперименте. А как вакцина будет вести себя в организме человека, да еще укушенного бешеным животным? Ведь при этом в рану попадает возбудитель бешенства, следовательно, человек оказывается уже зараженным. Предохранит ли вакцина от бешенства человека?

Эти и другие вопросы опять встали перед Пастером. Ответ на них могли дать все новые и новые опыты, и они ставились с лихорадочной поспешностью. Ведь только в служении человеку ученый видел смысл и цель своей работы. Именно эта поспешность едва не погубила всей идеи. Именно здесь Пастера ждали тяжелые разочарования и неудачи. А сколько было упреков в том, что химик взялся не за свое дело. Сколько пришлось отводить обвинений, иногда совершенно бессмысленных и нелепых, по поводу гибели отдельных больных, причиной которой являлась вовсе не вакцинация.

Пастер — великий гуманист не мог сразу решиться переплети результат своих экспериментов с животных на человека. Хотя многое уже было изучено, но все ли до конца было ясным? Все ли в эксперименте было предусмотрено? Надо сказать, что даже его верные ученики Ру и Шамберлан отказались на этом этапе экспериментов переходить к вакцинации людей, считая ее преждевременной.

Наконец, с помощью и при моральной поддержке Транше и других ученых Пастер решается на прививки человеку. Большую роль здесь сыграл случай с 9-летним мальчиком Жозефом Мейстером, укушенным бешеной собакой. Обезумевшая от страха за жизнь ребенка мать умоляла Пастера сделать прививки ее сыну. День 6 июля 1885 г. вошел в историю науки и, в частности, в историю пастеровских прививок против бешенства как знаменательная дата. В этот день Пастер начал делать прививки людям, и первым его пациентом был Жозеф Мейстер. «Этот ребенок, — писал Луи Пастер, — был повален собакой на землю и получил много ран от укусов на руке, на голенях, на бедрах; некоторые из них были настолько глубокие, что мешали ему ходить… Смерть этого ребенка представлялась неизбежной, и я решился, не без сильных и мучительных сомнений, как легко себе представить, испытать на Мейстере метод, который мне всегда удавался на собаках».

Вторым пациентом Пастера стал 15-летний пастух Жюпиль. Курс прививок спас жизнь и этому юноше, жестоко искусанному бешеным волком. Весть о спасении Мейстера и Жюпиля быстро разнеслась по всему миру. Из разных стран в Париж к Пастеру стали съезжаться искусанные бешеными животными люди. Начались массовые прививки. Жизнь сотен людей уже была спасена. Франция ликовала. Пастер стал ее национальным героем. Но время шло, а с ним приходили страшные вести о заболевании бешенством и смерти некоторых пациентов, которым были сделаны прививки.

Еще в начале прививок находились скептики даже среди ученых и врачей, но когда стали приходить вести о смертельных исходах, кампания против Пастера из стен академий и медицинских учреждений проникла в прессу. Началась травля старого ученого. Его называли шарлатаном, виновником смерти людей, утверждали, что прививки не только бесполезны, но и опасны.

Правы были Ру и Шамберлан, предупреждавшие своего учителя в недостаточной изученности вакцины и о преждевременности вакцинации людей.

Надо сказать, что теоретические основы пастеровской идеи оказались правильными, и жизнь в дальнейшем это подтвердила. Но для большинства ученых того времени в идее пастеровских прививок многое было непонятным. Все то, что до сих пор было известно о прививках, например, против оспы или сибирской язвы, противоречило новым пастеровским утверждениям. Ведь против оспы вакцинируют здоровых, незараженных людей, так же как и против сибирской язвы вакцинируют незараженных животных.

Новизна, а отсюда и непонятность идеи Пастера лишь увеличивали недоверие и нападки на ученого и его метод. Гениальная мысль Луи Пастера восторжествовала лишь позднее, пройдя через суровую проверку его метода самой жизнью.

Почему же все-таки возможно вакцинировать укушенных людей при наличии возбудителей в их организме? Суть заключается в следующем: чтобы возникло бешенство, возбудитель из места укуса — раны должен проникнуть в клетки центральной нервной системы, в головной и спинной мозг. Этот долгий путь, естественно, требует и большого времени. Инкубационный период при бешенстве гораздо длиннее, чем при многих других заразных болезнях, и может длиться несколько недель и даже месяцев.

Именно это и имел в виду Пастер, когда создавал теоретические основы своего метода. Да, рассуждал Пастер, в организме укушенного уже есть возбудитель бешенства, но наша задача — воспользоваться счастливым обстоятельством (относительно длинной инкубацией), чтобы за это время успеть создать иммунитет искусственно. Надо, образно говоря, как бы перегнать развитие болезни в организме, мобилизовать его защитные силы, создать эту защиту, а в результате уничтожить микробов бешенства на пути к мозгу. В этом вся идея прививок против бешенства.

А как быть в случаях тяжелых укусов, особенно в шею, лицо, голову, когда инкубационный период намного короче? Ведь в таких случаях бешенство может возникнуть раньше. И именно эти случаи с ускоренным инкубационным периодом пока еще давали смертельные исходы.

Пастер, убежденный в своей правоте, не сдавался. Он мужественно борется и ищет новые пути, продолжает делать прививки, применяет метод интенсивной вакцинации. Он делает не одну прививку в день, а две, три, не используя даже мозг многодневной сушки. Результаты быстро сказались, смертность среди людей, которым проводили прививки, резко снизилась, но все же еще оставалась.

Совершенно очевидно, что после укуса следует как можно раньше начинать прививки. Промедление здесь поистине смерти подобно. Это элементарное требование, теперь такое ясное, в то время требовало объяснений и доказательств.

К Пастеру в Париж стекались люди, пострадавшие от укусов, не только из Франции, но и из других стран. При тогдашних средствах сообщения несчастные, обреченные люди тратили на переезд много дней и недель. Терялось драгоценное время, а с ним и надежда на спасение. Обвиняли же метод Пастера.

Состояние нервной системы и образ жизни некоторых пострадавших, в частности злоупотребление алкоголем, также мешали успешности прививок, а трагические исходы вновь приписывались Пастеру и его методу. Неудачи в отдельных случаях вскоре объяснились. Причинами оказались несовершенство техники работы и загрязнение кроличьего мозга посторонними микробами.

Даже время года для приготовления вакцины имело значение. Так, в жаркое летнее время вирус резко ослаблялся и, следовательно, ослаблялось действие вакцины. Все это и многое другое, встретившееся на практике, постепенно выяснялось, устранялись причины, приводящие к неудачным исходам.

Через тяжкие испытания прошел метод вакцинации против бешенства, пока, наконец, не получил признания и не стал успешно применяться во всем мире, правда, в несколько измененном виде.

В настоящее время широко используется на практике вакцина К. Ферми. По методу Ферми вирус бешенства подвергается ослаблению с помощью химического вещества — фенола. Иным путем пошел X. Копровски. Он решил выращивать вирус бешенства на куриных эмбрионах (зародышах в яйце). В этом организме при обилии питательных веществ накапливаются в больших количествах и вирусы.

После длительных пассажей (перевивок) вирус бешенства потерял способность заражать и вызывать заболевание, но вызывал иммунитет против бешенства. Поиски вакцины против бешенства продолжались и в других направлениях. Большой интерес представляют питательные среды для вирусов и те эксперименты, которые ставили ученые. Так, например, брали вирус, полученный из мозга бешеной собаки (уличный вирус) и заражали через мозг белых мышей. Долго продолжались перевивки от одной зараженной белой мышки другой, пока вирус не стал ослабевать в своей вирулентности. Затем была создана специальная среда (культуры клеток почки сирийского хомяка), и перевивки продолжались уже вне организма животного. В результате ученые добились такого снижения вирулентности и безвредности вируса бешенства, что стало возможным использовать его в качестве вакцины для профилактики бешенства.

Эксперименты видоизменялись, но цель вставилась той же — добиться ослабления вируса бешенства и получения вакцины против бешенства. В СССР М. А. Селимов с сотрудниками разработал метод получения вакцины, «воспитывая» вирус на культуре почек сирийского хомяка и определенных тканях куриного зародыша. Получилась так называемая тканевая вакцина против бешенства.

источник

Масштабные антипрививочные кампании, к которым присоединяется все больше молодых родителей, массовая антипрививочная истерия в СМИ на фоне изредка раздающихся голосов защитников вакцинации побудили меня к написанию цикла статей о прививках. И первый материал посвящен тому, что же изменилось в мире с появлением вакцин.

Противники вакцинации, громко трубящие о ее «грозных» последствиях, почему-то «забывают упомянуть» о временах, когда в мире бушевали эпидемии страшных, смертельных заболеваний. Я восполню этот пробел и напомню читателям о трагедиях, развернувшихся в те годы.

Дифтерия, о которой сегодня благополучно забыли, — тяжелейшее заболевание, которое осложняется параличом конечностей, мягкого нёба, голосовых связок, дыхательных путей. Человек может умереть в невыносимых муках, будучи не в состоянии вдохнуть даже маленький глоток воздуха. Смертельный исход ждет до 20 % детей и взрослых старше 40 лет и 5–10 % людей среднего возраста. В 1920-х годах в Америке во время эпидемии дифтерии погибало 13–15 тысяч человек в год, большинство из которых дети. В 1943 году в Европе дифтерию перенесли 1 миллион человек, из которых 50 тысяч умерли.

В 1974 году Всемирная организация здравоохранения запустила программу иммунизации от дифтерии, результаты которой проявились моментально. Эпидемии стали редкостью, а их редкие вспышки оказывались ничем иным, как следствием ошибок врачей.

Так, в начале 1990-х годов в России медицинские чиновники решили пересмотреть существующий еще с советских времен список противопоказаний к вакцинации против дифтерии — разумеется, с благими намерениями. Он был значительно расширен, и результаты этих намерений привели… к эпидемии дифтерии в 1994 году. Тогда дифтерией заболели 39 703 человека.

Для сравнения: в спокойный 1990 год было зафиксировано всего 1211 случаев заболевания. Но дифтерия — это не самая жуткая болезнь, которую удалось взять под контроль с помощью вакцин.

Мучительное заболевание, смертность от которого может достигать 50 %. Заразиться им проще простого: отец певца революции Маяковского уколол палец иглой и умер от жестокого столбняка. Токсины, которые выделяют бактерии Клостридии тетани, — яды, приводящие к тоническим сокращениям жевательных мышц, судорогам мимических мышц, а затем к напряжению мышц спины, конечностей, глотки, живота. Вследствие сильных мышечных спазмов нарушается или полностью прекращаются глотание, дефекация, мочеиспускание, кровообращение и дыхание. Около 40 % больных старше 60 лет погибают в неописуемых страданиях. Молодые пациенты имеют больше шансов на выживание, однако перенесенная болезнь останется одним из самых больших кошмаров в их жизни.

Благодаря массовой иммунизации опасность заболеть столбняком приняла гипотетический характер. Так, на 2012 год в России регистрировалось всего 30–35 случаев столбняка в год, причем 12–14 из них имели летальный исход. Около 70 % заболевших — пожилые люди старше 65 лет, не привитые от столбняка.

Еще одно ужасное заболевание, оставшееся в допрививочном прошлом навсегда, — оспа. Эта вирусная инфекция легко передается воздушно-капельным путем, собирая богатый урожай жертв. Мало кто сегодня знает и помнит, что как минимум каждый третий больной оспой погибал. Общий коэффициент смертности детей до года составлял 40–50 %.

Сыпь, покрывающая практически все тело, — это только одна, эстетическая сторона заболевания. Такие же оспины со временем появлялись на слизистой оболочке носа, ротоглотки, гортани, а также дыхательных путей, половых органов, мочеиспускательного канала и конъюнктивы глаза.

Затем эти высыпания превращались в эрозии, а позже возникали признаки поражения головного мозга: нарушение сознания, судороги, бред. Осложнения оспы — воспаление головного мозга, пневмония, сепсис. Пациентам, которые выживали после этого заболевания, на память оставались уродующие многочисленные рубцы.

В XVIII веке оспа была лидирующей причиной смертности в мире. Каждый год 400 тысяч европейцев погибали вследствие эпидемий. И только создание вакцины остановило эту напасть. Начало концу оспенным трагедиям положил английский врач Эдвард Дженнер. Он заметил, что доярки, переболевшие коровьей оспой, не заражаются оспой человеческой. Так, еще в начале XVIII века, появилась первая в мире вакцина против натуральной оспы, в состав которой входил неопасный для человека вирус коровьей оспы.

В Россию вакцинация пришла после смерти от оспы императора Петра II. Первыми вакцинированными стали императрица Екатерина II и будущий император Павел I. Так началась эра вакцинации, которая позволила полностью победить уносящую миллионы жизней болезнь. По данным ВОЗ, с 1978 года оспа считается побежденной — с тех пор не было зарегистрировано ни одного случая заболевания.

Благодаря массовой иммунизации оспу удается держать под тотальным контролем, и это — огромное достижение современной медицины. О котором, конечно же, не упоминают противники прививок. Да, спросит читатель, но как же все-таки работают вакцины в человеческом организме?

Прививки учат организм правильно реагировать на возбудителя заболевания. Убитые или живые, но инактивированные микробы стимулируют иммунный ответ без развития заболевания. В результате организм вырабатывает антитела к антигенам возбудителя и формирует стойкий иммунитет к ним.

Повсеместная вакцинация, начавшаяся в XX веке, не только уничтожила натуральную оспу. Распространенность кори и свинки снизилась на 99 %, а коклюша — на 81 %. Мы почти забыли о полиомиелите и паротите. Девочки, становясь девушками и женщинами, больше не рискуют заразиться «смешной» краснухой во время беременности и потерять из-за этого долгожданного малыша.

Мы привыкли к стабильности и достижениям современной медицины настолько, что стали их не замечать. И тогда в нашу жизнь ворвались голоса тех, кто с горящими праведным гневом глазами возвещает о… смертельной опасности вакцинации. Преисполненные трагичных интонаций эти голоса призывают защищаться от прививок как от самых зловредных, непредсказуемых своими последствиями веществ. На чём же основывают эти люди свои теории, чем аргументируют они «опасность» вакцинации и насколько эти аргументы соответствуют действительности, я расскажу в следующих статьях.

Впервые оспа была диагностирована более 3000 лет назад в Древней Индии и Египте. Длительное время это заболевание было одним из самых страшных и беспощадных. Многочисленные эпидемии, охватывающие целые континенты, уносили жизни сотен тысяч людей. История свидетельствует о том, что в XVIII столетии Европа ежегодно теряла 25% взрослого населения и 55% детей. И только в конце XX века Всемирной организацией здравоохранения была официально признана полная ликвидации оспы в развитых странах мира.

Победа над этим, а также рядом других, не менее смертоносных заболеваний стала возможной благодаря изобретению метода вакцинации. Впервые вакцину создал английский доктор Эдвард Дженнер. Идея прививки от возбудителя коровьей оспы пришла молодому врачу в голову в момент беседы с дояркой, руки которой покрывала характерная сыпь. На вопрос о том, не больна ли крестьянка, та ответила отрицательно, подтвердив, что уже переболела коровьей оспой ранее. Тогда Дженджер вспомнил, что среди его пациентов даже на пике эпидемии не встречались люди данной профессии.

В течение долгих лет доктор занимался сбором сведений, подтверждающих предохранительные свойства коровьей оспы по отношению к натуральной. В мае 1796 года Дженнер решился на проведение практического эксперимента. Он привил восьмилетнему Джеймсу Фиппсу лимфу оспяной пустулы человека, заразившегося коровьей оспой, а несколько позже — содержимое пустулы другого больного. На этот раз в ней присутствовал возбудитель натуральной оспы, но мальчик не заразился.

Повторив эксперимент несколько раз, в 1798 году Дженнер опубликовал научный доклад, касающийся возможности предотвращения развития заболевания. Новая методика получила поддержку светил медицины, и в том же году вакцинация была проведена среди солдат английской армии и матросов флота. Сам Наполеон, несмотря на противостояние английской и французской короны в те времена, велел изготовить золотую медаль в честь величайшего открытия, которое впоследствии спасло жизни сотен тысяч человек.

Первая прививка против оспы в России была сделана в 1801 году. В 1805-м вакцинация была принудительно введена во Франции. Благодаря открытию Дженнера стала возможной эффективная профилактика гепатита В, краснухи, столбняка, коклюша, дифтерии и полиомиелита. В 2007 году в США была разработана первая в истории вакцина против рака, с помощью которой ученым удалось справиться с вирусом папилломы человека.

История вакцинации по современным меркам относительно молода, и хотя предания о профилактике инфекционных заболеваний путем прототипов вакцин известны со времен античного Китая, первые официально задокументированные данные об иммунизации датируются началом XVIII века. Что же известно современной медицине об истории прививок, их создателях и дальнейшем развитии вакцинации?

Что бы ни говорили противники — история неизменна, и история прививок тому подтверждение. Описания эпидемий заразных болезней известны нам с древних времен. Например, в Вавилонском эпосе о Гильгамеше (2000 г. до н. э.) и в нескольких главах Ветхого Завета.

Древнегреческий историк при описании эпидемии чумы в Афинах в 430 г. до н. э. поведал миру о том, что переболевшие и выжившие от чумы люди никогда не заражаются ею повторно.

Другой историк времен римского императора Юстиниана, описывая эпидемию бубонной чумы в Риме, также обращал внимание на невосприимчивость переболевших людей к повторному заражению и называл это явление латинским термином immunitas.

В XI в. Авиценна выдвинул свою теорию приобретенного иммунитета. Позже эту теорию развил итальянский врач Джироламо Фракасторо. Авиценна и Фракасторо полагали, что все болезни вызываются мелкими «семенами». А иммунитет к оспе у взрослых объясняется тем, что, переболев в детстве, организм уже выбросил из себя тот субстрат, на котором могут развиваться «семена оспы».

По преданиям, профилактика заболевания черной оспой существовала еще в античном Китае. Там это делали так: здоровым детям в нос вдували через серебряную трубочку порошок, полученный из истолченных сухих корочек с оспенных язвочек больных оспой людей. Причем мальчикам вдували через левую ноздрю, а девочкам — через правую.

Похожая практика имела место в народной медицине многих стран Азии и Африки. Из истории вакцинации от оспы известно, что с начала XVIII в. практика противооспенных прививок пришла и в Европу. Эту процедуру называли вариоляцией (от лат. variola — оспа). По сохранившимся документам, в Константинополе начали прививать оспу с 1701 г. Прививки не всегда заканчивались добром, в 2-3% случаев от прививок оспы умирали.

Но в случае пришествия дикой эпидемии смертность составляла до 15-20%. Кроме того, выжившие от оспы оставались с некрасивыми щербинами на коже, в том числе и на лице. Поэтому сторонники прививок уговаривали людей решаться на них хотя бы ради красоты лица своих дочерей (как, например, в «Философских тетрадях» Вольтера и в романе «Новая Элоиза» Жан Жака Руссо).

Из Константинополя в Англию идею и материал для прививки оспы привезла леди Мэри Монтегю. Она сделала вариоляцию своим сыну и дочери и убедила привить детей принцессу Уэльскую. Но прежде чем подвергнуть Риску детей из королевской семьи, прививку сделали шести заключенным, пообещав им освобождение, если они хорошо перенесут вариоляцию. Заключенные не заболели, и в 1722 г. принц и принцесса Уэльские привили от оспы двух своих дочерей, чем подали монарший пример жителям Англии.

С 1756 г. практика вариоляции, также добровольная, имела место и в России. Как известно, оспу привила Екатерина Великая.

Таким образом, как функция защищенности организма от заразных болезней иммунитет был известен людям с древности.

Ну, а возбудителей болезней человек получил возможность изучать только с появлением и развитием методов микроскопии.

Кто же создал вакцину против оспы согласно официальным источникам? Историю прививок против оспы в современной иммунологии начинают отслеживать с работ английского врача Эдварда Дженнера, который в 1798 г. опубликовал статью, где описал свои испытания прививок коровьей оспы сначала одному 8-летнему мальчику и затем еще 23 людям. Через 6 недель после прививки Дженнер рискнул привить испытуемым натуральную человеческую оспу — люди не заболели.

Дженнер был врачом, но испытанный им метод придумал не он. Он обратил профессиональное внимание на практику отдельных английских фермеров. В документах осталось имя фермера Бенджамина Джести, который в 1774 г. попробовал вцарапывать вязальной иглой содержимое пустул оспы коров своей жене и ребенку с целью их защиты от заболевания черной оспой.

Дженнер разработал врачебную технику оспопрививания, которую он назвал вакцинацией (vaccina — по-латыни коровья). Этот термин из истории первых прививок от оспы «дожил» до наших дней и давно получил расширенное толкование: вакцинацией называют любую искусственную иммунизацию с целью защиты от болезни.

А что же касательно истории открытия других вакцин, кто создал прививки от таких инфекционных заболеваний, как туберкулез, холера, чума и так далее? В 1870-1890 гг. благодаря развитию методов микроскопии и методов культивирования микроорганизмов Луи Пастер (стафилококк), Роберт Кох (туберкулезная палочка, холерный вибрион) и другие исследователи, врачи (А. Нейссер, Ф. Леффлер, Г. Хансен, Э. Клебс, Т. Эшерих и др.) открыли возбудителей более 35 заразных болезней.

Имена первооткрывателей остались в названиях микробов — нейссерии, палочка Леффлера, клебсиелла, эшерихии и т.д.

Имя Луи Пастера связано с историей вакцинации самым непосредственным образом. Он показал, что заболевания можно экспериментально вызывать путем введения в здоровые организмы определенных микробов. Он вошел в историю как создатель вакцин против куриной холеры, сибирской язвы и бешенства и как автор метода ослабления заразности микробов путем искусственных обработок в лаборатории.

По преданию, Л. Пастер открыл этот метод случайно. Он (или лаборант) забыл пробирку с культурой холерного вибриона в термостате, культура перегрелась. Ее, тем не менее, ввели подопытным курам, но те холерой не заболели.

Побывавших в опыте кур не выкинули из соображений экономии, а через какое-то время вновь использовали в экспериментах по заражению, но уже не испорченной, а свежей культурой холерного вибриона. Однако эти куры опять не заболели. Л. Пастер обратил на это внимание, подтвердил в других экспериментах.

Вместе с Эмилем Роуксом Л. Пастер исследовал различные штаммы одного и того же микроорганизма. Они показали, что разные штаммы проявляют различную патогенность, т.е. вызывают клинические симптомы разной степени тяжести.

В последовавшее столетие медицина энергично внедрила пастеровский принцип изготовления вакцинирующих препаратов путем искусственного ослабления (аттенуации) диких микробов.

Продолжалось изучение механизмов защиты от инфекционных болезней. История создания вакцины была бы неполной без Эмиля фон Беринг и его коллег Ш. Китасато и Е. Вернике.

В 1890 г. они опубликовали работу, в которой показали, что сыворотка крови, т.е. жидкая бесклеточная часть крови от людей, переболевших дифтерией или столбняком, способна инактивировать этот токсин. Феномен назвали антитоксическими свойствами сыворотки и ввели термин «антитоксин».

Антитоксины были отнесены к белкам, и более того — к белкам-глобулинам.

В 1891 г. Пауль Эрлих назвал противомикробные вещества крови термином «антитело» (по-немецки antikorper), так как бактерий в то время называли термином korper — микроскопические тельца.

Дальнейшая история прививок в России и других странах

В 1899 г. JI. Детре (сотрудник И.И. Мечникова) ввел термин «антиген» для обозначения субстанций, в ответ на которые организм животных и человека способен вырабатывать антитела.

В 1908 г. П. Эрлиху вручили Нобелевскую премию за гуморальную теорию иммунитета.

Одновременно с П. Эрлихом в 1908 г. Нобелевскую премию за клеточную теорию иммунитета получил великий русский ученый Илья Ильич Мечников (1845-1916). Современники И.И. Мечникова отзывались об его открытии как о мысли «гиппократовского масштаба». Сначала ученый как зоолог обратил внимание на то, что определенные клетки беспозвоночных морских животных поглощают твердые частицы и бактерий, проникших во внутреннюю среду.

Затем (1884 г.) он увидел аналогию между этим явлением и поглощением белыми клетками крови позвоночных животных микробных телец. Эти процессы наблюдали до И.И. Мечникова и другие микроскописты. Но только И.И. Мечников осознал, что это явление не есть процесс питания данной единичной клетки, а защитный процесс в интересах целого организма.

И.И. Мечников первым рассматривал воспаление как защитное, а не разрушительное явление.

Дальнейшая история прививок в России и других странах развивалась семимильными шагами.

Научный спор между клеточной (И.И. Мечников и его ученики) и гуморальной (П. Эрлих и его сторонники) теориями иммунитета длился более 30 лет и способствовал развитию иммунологии как науки.

Первыми институтами, где работали первые иммунологи, были институты микробиологии (Институт Пастера в Париже, Институт Коха в Берлине и др.). Первым специализированным иммунологическим институтом стал Институт Пауля Эрлиха во Франкфурте.

Следующий нестандартно мыслящий иммунолог — Карл Ландштейнер. В то время как почти все современные ему иммунологи изучали механизмы защиты организма от инфекций, К. Ландштейнер замыслил и осуществил исследования по образованию антител в ответ не на микробные антигены, а на самые разные другие вещества. В 1901 г. он открыл группы крови АВО (антигены эритроцитов и антитела — агглютинины) (в настоящее время это система АВН). Это открытие имеет глобальные последствия для человечества, может быть, даже для его судьбы как вида.

В течение 3-4 десятилетий середины XX в. биохимики узнали, какие есть варианты молекул иммуноглобулинов и какова структура молекул этих белков. Были открыты 5 классов, 9 изотипов иммуноглобулинов. Последним был идентифицирован иммуноглобулин класса Е.

Наконец, в 1962 г. Р. Портер предложил модель структуры молекул иммуноглобулинов. Она оказалась универсальной для иммуноглобулинов всех типов и совершенно верной и по сегодняшний день наших знаний.

Затем была разгадана загадка разнообразия антиген-связывающих центров антител.

Многие ученые-иммунологи были удостоены Нобелевской премии.

С конца 80-х гг. XX в. наступила пора новейшей истории иммунологии. В этой области работают тысячи исследователей и врачей во всем мире, и не в последнюю очередь — в России.

Совершенствуется производство вакцин против различных болезней.

Быстро накапливаются новые факты, которые помогают понять и объяснить обществу, чего нельзя делать, чтобы окончательно не погубить не нами созданную жизнь на нашей планете.

Статья прочитана 9 872 раз(a).

1796 год стал переломным в истории вакцинации, и связан он с именем английского врача Э. Дженнера. Во время практики в деревне Дженнер обратил внимание, что фермеры, работающие с коровами, инфицированными коровьей оспой, не болеют натуральной оспой. Дженнер предположил, что перенесенная коровья оспа является защитой от человеческой, и решился на революционный по тем временам эксперимент: он привил коровью оспу мальчику и доказал, что тот стал невосприимчивым к натуральной оспе – все последующие попытки заразить мальчика человеческой оспой были безуспешными. Так появилась на свет вакцинация (от лат. vacca – корова), хотя сам термин стал использоваться позже. Благодаря гениальному открытию доктора Дженнера была начата новая эра в медицине. Однако лишь спустя столетие был предложен научный подход к вакцинации. Его автором стал Луи Пастер.

В 1880 году Пастер нашел способ предохранения от заразных заболеваний введением ослабленных возбудителей. Французский ученый Луи Пастер стал человеком, который совершил прорыв в медицине (и иммунологии, в частности). Он первым доказал, что болезни, которые мы сегодня называем инфекционными, могут возникать только в результате проникновения в организм микробов из внешней среды. В 1880 году Пастер нашел способ предохранения от заразных заболеваний введением ослабленных возбудителей, который оказался применимым ко многим инфекционным болезням. Пастер работал с бактериями, вызывающими куриную холеру. Он концентрировал бактериальные препараты настолько, что их введение даже в ничтожных количествах вызывало гибель кур в течение суток. Однажды, проводя свои эксперименты, Пастер случайно использовал культуру бактерий недельной давности. На этот раз болезнь у кур протекала в легкой форме, и все они вскоре выздоровели. Ученый решил, что его культура бактерий испортилась и приготовил новую. Но и введение новой культуры не привело к гибели птиц, которые выздоровели после введения им «испорченных» бактерий. Было ясно, что инфицирование кур ослабленными бактериями вызвало появление у них защитной реакции, способной предотвратить развитие болезни при попадании в организм высоковирулентных микроорганизмов.

Если вернуться к открытию Дженнера, то можно сказать, что Пастер привил «коровью оспу» для того, чтобы предотвратить заболевание обычной «оспой». Отдавая долг первооткрывателю, Пастер также назвал открытый им способ предупреждения инфекционной болезни вакцинацией, хотя, конечно же, никакого отношения к коровьей оспе его ослабленные бактерии не имели.

В 1881 году Пастер произвел массовый публичный опыт, чтобы доказать правильность своего открытия. Он ввел нескольким десяткам овец и коров микробы сибирской язвы. Половине подопытных животных Пастер предварительно ввел свою вакцину. На второй день все невакцинированные животные погибли от сибирской язвы, а все вакцинированные – не заболели и остались живы. Этот опыт, протекавший на глазах у многочисленных свидетелей, был триумфом ученого.

В 1885 году Луи Пастером была разработана вакцина от бешенства – заболевания, которое в 100% случаев заканчивалось смертью больного и наводило ужас на людей. Дело доходило до демонстраций под окнами лаборатории Пастера с требованием прекратить эксперименты. Ученый долго не решался испробовать вакцину на людях, но помог случай. 6 июля 1885 года в его лабораторию привели 9-летнего мальчика, который был настолько искусан, что никто не верил в его выздоровление. Метод Пастера был последней соломинкой для несчастной матери ребенка. История получила широкую огласку, и вакцинация проходила при собрании публики и прессы. К счастью, мальчик полностью выздоровел, что принесло Пастеру поистине мировую славу, и в его лабораторию потянулись пострадавшие от бешеных животных не только из Франции, но и со всей Европы (и даже из России).

«Думать, что открыл важный факт, томиться лихорадочной жаждой сообщить о нём и сдерживать себя днями, неделями, годами, бороться с самим собой и не объявлять о своём открытии, пока не исчерпал всех противоположных гипотез – да, это тяжёлая задача»

С тех пор появилось более 100 различных вакцин, которые защищают от сорока с лишним инфекций, вызываемых бактериями, вирусами, простейшими.

Задать вопрос специалисту

Вопрос экспертам вакцинопрофилактики

Ребенку 1 г 10 мес. В 6 мес. была сделана прививка Инфанрикс-Гекса, две недели назад прививка корь-краснуха-паротит. Ребенок начал ходить в детский сад, сейчас узнала, что в группе есть дети, которым некоторое время назад сделали живую вакцину от полиомиелита.

Представляет ли пребывание с такими детьми опасность для моего ребенка?

Когда и какую можно сделать прививку от полиомиелита нам сейчас? У меня выбор: поставить комплексную АКДС Инфанрикс или только полиомиелит, можно ли сделать прививку от полиомиелита через две недели после Приорикса?

Для защиты от любых форм полиомиелита ребенок должен иметь как минимум 3 прививки. При вакцинации других детей живой оральной вакциной против полиомиелита непривитые или не полностью привитые дети высаживаются из детского сада на 60 дней для предупреждения развития вакциноассоциированного полиомиелита.

Нет, через 2 недели вы не можете начать прививки, интервал между прививками не меньше 1 месяца. Вам нужно сделать как минимум 2 прививки против полиомиелита прежде, чем ребенок будет защищен от этой инфекции. Т.е если ребенок привит дважды, то только через 1 месяц после последней прививки выработается достаточный иммунитет. Лучше привиться 2-х кратно с интервалом в 1,5 месяца АКДС+ ИПВ(Пентаксим, ИнфанриксГекса), через 6-9 месяцев делается ревакцинация. АКДС+ИПВ/ОПВ(Пентаксим). Прививка против гепатита В у вас пропала, но если вы будете прививаться ИнфанриксГекса дважды с интервалом в 1,5 месяца, 3ю прививку против гепатита В можно сделать через 6 месяцев от первой. Рекомендую сделать полный курс вакцинации, поскольку ребенок посещает детский сад (организованный коллектив) и практически не имеет никакой защиты от опасных и тяжелых инфекций.

У меня вопрос несколько общего характера, но обращаюсь к вам, так как до сих пор не смог получить на него внятного ответа. Кому, на ваш взгляд, может быть выгодна кампания по дискредитации вакцинации и, в особенности, детской? Я не прошу, конечно же, назвать конкретных виновников, мне интереснее понять, какие стороны могут быть в этом заинтересованы? Или же это процесс спонтанный, сродни невежеству, не нуждающемуся в подпитке?

Мои знакомые врачи предполагают, что информационные вбросы о вреде прививок могут (в теории) заказывать производители лекарств, поскольку тем выгоднее, чтобы человек шёл в аптеку за рекламируемым по ТВ препаратом, а не делал прививку у врача. Но это было бы справедливо для вакцины (к примеру) от гриппа (по ТВ хватает рекламы противогриппозных препаратов). А как же тогда быть с вакциной БЦЖ, вакциной от гепатита? Такие-то препараты по ТВ не рекламируют. С такой же логикой можно было бы предположить, что «заинтересованная сторона» — производители вегетарианских товаров и витаминов, которые предлагают пичкать ими детей едва ли не с первых дней жизни, но и эта теория тоже представляется мне спорной. А вы что считаете по этому поводу?

Читайте также:  Болезни средневековья чума и оспа

Это вопрос, который, к сожалению, не имеет точного ответа, можно лишь предполагать. Понять мотивацию людей, выступающих против вакцинопрофилактики — метода, доказавшего свою безопасность и эффективность для профилактики инфекционных и, на сегодняшний день, некоторых неинфекционных болезней, достаточно сложно.

Существуют общества, фонды «антивакцинальщиков», которые зарабатывают на этом рейтинг, в т.ч. с использованием интернет-технологий (например посещаемость, просмотры сайтов, сообщения в форумах), а возможно и деньги. Возможно это лоббирование интересов со стороны гомеопатов, т.к. большинство гомеопатов высказываются негативно в отношении вакцинации, рекомендуя заменить эпидемиологически обоснованный метод – вакцинацию, на недоказанный — гомеопатию.

Моей дочери 13 лет и она не болела ветряной оспой. Хотим сделать прививку, правильно ли мы поступаем?

Отвечает Харит Сусанна Михайловна

Да, чем старше ребенок, тем, к сожалению, больше вероятность тяжелого течения ветряной оспы, А так как это девочка, то нужно подумать и о том, что если заболевают ветряной оспой во время беременности, то это приводит к тяжелой патологии плода.

Можно ли взрослому привиться от ротавируса, если каждый год болею этим, нет желчного пузыря, спасибо!

Отвечает Харит Сусанна Михайловна

Нет, смысла в вакцинации для взрослых нет. Взрослые не болеют очень тяжело, а задача вакцины против ротавируса – предотвратить тяжелые формы заболевания с обезвоживанием у младенцев. Потом на протяжении всей жизни все равно заболевания возможны, но в легкой форме. Возможно стоит поговорить с гастроэнтерологом о профилактических мерах, например, лечении биопрепаратами.

У нас медотвод до 3 лет. Родились недоношенными,повышен. ВЧД, ВПК, ОАК, дмжп, дмпп. В роддоме получили гепатит в и после бцж и манту в 1 год и все. После всего увиденного болезней страшных боимся получать прививки. Когда мы собирались получить прививки от кори в тот момент столько детей стали инвалидом (есть дети дальних родственников возраст начиная год и старшекласники). При наших болячках можно ли нам делать прививки? Какие анализы сдавать перед прививкой?

Отвечает Полибин Роман Владимирович

Для ребенка, особенно при наличии указанных состояний опасны не прививки, а инфекции. Для проведения вакцинации обязателен осмотр врача перед прививкой, клинический анализ крови, при необходимости – общий анализ мочи и осмотр врача специалиста, у которого наблюдается ребенок с имеющимися заболеваниями.

Что делает эта прививка? Как решается проблема с заражением столбняком.

Отвечает Харит Сусанна Михайловна

Прививка против столбняка защищает от развития заболевания. Заражение столбняком происходит путем попадания спор бактерий, находящихся в загрязненных землей предметах, в поврежденные ткани. Споры столбнячной палочки истребить невозможно, поэтому проблема с заболеванием решается путем плановой вакцинации.

Подскажите пожалйста, как лучше и более аргументировано ответить на мнение студента-медика и вообще любого медработника: «я не делаю прививку от гриппа, потому что не известно какой вирус будет в этом эпидсезон, а прививку от гриппа разрабатывают летом, когда еще на знают актуальные штаммы будущей эпидемии». Другими словами какая вероятность в % того, что тривакцина от гриппа, которой ппививают осенью «перекроет» актуальные штаммы вируса в наступающем эпидсезоне зимой с учетом того, что возможно появление одного или нескольких новых штаммов. Буду также благодарен, если Вы сбросите ссылки на первоисточники таких данных, чтобы мои слова были более убедительны.

Отвечает Полибин Роман Владимирович

Главными аргументами в необходимости профилактики гриппа являются сведения о высокой контагиозности, тяжести, многообразии осложнений этой инфекции. Грипп чрезвычайно не только для групп риска, но и для здоровых людей среднего возраста. Такое частое осложнение как пневмония протекает с развитием РДС и летальностью, достигающей 40%. В результате гриппа могут развиваться синдром Гудпасчера, Гийена-Барре, рабдомиолиз, синдром Рейе, миозит, неврологические осложнения и т.д. Причем среди умерших и лиц с тяжелыми осложнениями привитых людей не наблюдается!

Вакцинация согласно ВОЗ является самой эффективной мерой профилактики гриппа. Практически все современные противогриппозные вакцины содержат три типа вируса – H1N1, H3N2 и В. В последние годы зарубежом зарегистрировано несколько четырехвалентных вакцин, создан такой препарат и в России. Разновидности вируса меняются каждый год. И существует сеть специальных Национальных центров ВОЗ по гриппу, которые проводят наблюдение за циркулирующими вирусами, отбирают пробы, осуществляют выделение вирусов и антигенную характеристику. Информацию о циркуляции вирусов и впервые выделенные штаммы отправляют в сотрудничающие центры и головные контрольные лаборатории ВОЗ для проведения антигенного и генетического анализа, в результате которого разрабатываются рекомендации о составе вакцины для профилактики гриппа в южном и северном полушариях. Эта система Глобального надзора за гриппом. Таким образом, состав вакцины на грядущий сезон не «угадывается», а прогнозируется на основании уже выделенных антигенов при начавшейся циркуляции вируса и заболеваемости в одной из частей света. Прогноз является высокоточным. Ошибки бывают редко и связаны с распространением от животных нового типа вируса. Наличие защиты против штаммов вирусов гриппа не входящих в состав вакцины категорически не опровергается. Так лица привитые сезонной вакциной в эпидемическом сезоне 2009/2010 г.г. имели легкое течение гриппа, вызванного пандемическим штаммом, не вошедшим в состав вакцины и среди умерших не было людей, привитых от гриппа.

Информацию о системе Глобального Надзора за гриппом можно найти на официальном сайте ВОЗ или сайте Европейского Региона ВОЗ.

Вакцина (от лат. vacca — корова) — медицинский или ветеринарный препарат, предназначенный для создания иммунитета к инфекционным болезням. Вакцина изготавливается из ослабленных или убитых микроорганизмов, продуктов их жизнедеятельности, или из их антигенов, полученных генно-инженерным или химическим путём.

Первая вакцина получила свое название от слова vaccinia (коровья оспа) — вирусная болезнь крупного рогатого скота. Английский врач Эдвард Дженнер впервые применил на мальчике Джеймсе Фиппсе вакцину против натуральной оспы, полученную из пузырьков на руке больного коровьей оспой, в 1796 г. Лишь спустя почти 100 лет (1876-1881) Луи Пастер сформулировал главный принцип вакцинации — применение ослабленных препаратов микроорганизмов для формирования иммунитета против вирулентных штаммов.

Некоторые из живых вакцин были созданы советскими учеными, например, П. Ф. Здродовский создал вакцину против сыпного тифа в 1957-59 годах. Вакцину против гриппа создала группа ученых: А. А. Смородинцев, В. Д. Соловьев, В. М. Жданов в 1960 году. П. А. Вершилова в 1947-51 годах создала живую вакцину от бруцеллёза.

Движение против вакцинации возникло вскоре после разработки Эдвардом Дженнером первой вакцины против оспы. С развитием практики вакцинации росло и движение антивакцинаторов.

Как отмечают эксперты ВОЗ, большинство доводов антивакцинаторов не подтверждаются научными данными.

Вакцинация стимулирует адаптивный иммунный ответ путем образования в организме специфических клеток памяти, поэтому последующая инфекция тем же агентом вызывает стойкий, более быстрый иммунный ответ. Для получения вакцин используют штаммы патогенов, убитые или ослабленные, их субклеточные фрагменты или анатоксины.

Выделяют моновакцины — вакцины, приготовленные из одного патогена, и поливакцины — вакцины, приготовленные из нескольких патогенов и позволяющие развить стойкость к нескольким болезням.

Различают живые, корпускулярные (убитые), химические и рекомбинантные вакцины.

Живые вакцины изготовляют на основе ослабленных штаммов микроорганизма со стойко закрепленной авирулентностью (безвредностью). Вакцинный штамм после введения размножается в организме привитого и вызывает вакцинальный инфекционный процесс. У большинства привитых вакцинальная инфекция протекает без выраженных клинических симптомов и приводит к формированию, как правило, стойкого иммунитета. Примером живых вакцин могут служить вакцины для профилактики краснухи, кори, полиомиелита, туберкулеза, паротита.

Корпускулярные вакцины содержат ослабленные или убитые компоненты вириона (вирионы). Для умерщвления обычно используют тепловую обработку или химические вещества (фенол, формалин, ацетон).

Создаются из антигенных компонентов, извлеченных из микробной клетки. Выделяют те антигены, которые определяют иммуногенные характеристики микроорганизма.Химические вакцины имеют низкую реактогенность, высокую степень специфической безопасности и достаточную иммуногенную активность. Вирусный лизат, используемый для приготовления таких вакцин, получают обычно с помощью детергента, для очистки материала применяют разнообразные методы: ультрафильтрацию, центрифугирование в градиенте концентрации сахарозы, гель-фильтрацию, хроматографию на ионообменниках, аффинную хроматографию. Достигается высокая (до 95% и выше) степень очистки вакцины. В качестве сорбента применяется гидроксид алюминия (0,5 мг/доза), а в качестве консерванта — мертиолят (50 мкг/доза). Химические вакцины состоят из антигенов, полученных из микроорганизмов разными методами, преимущественно химическими. Основной принцип получения химических вакцин заключается в выделении протективных антигенов, обеспечивающих создание надежного иммунитета, и очистке этих антигенов от балластных веществ.

Для производства этих вакцин применяют методы генной инженерии, встраивая генетический материал микроорганизма в дрожжевые клетки, продуцирующие антиген. После культивирования дрожжей из них выделяют нужный антиген, очищают и готовят вакцину. Примером таких вакцин может служить вакцина против гепатита В, а также вакцина против вируса папилломы человека (ВПЧ).

История вакцинации по современным меркам относительно молода, и хотя предания о профилактике инфекционных заболеваний путем прототипов вакцин известны со времен античного Китая, первые официально задокументированные данные об иммунизации датируются началом XVIII века. Что же известно современной медицине об истории прививок, их создателях и дальнейшем развитии вакцинации?

Что бы ни говорили противники — история неизменна, и история прививок тому подтверждение. Описания эпидемий заразных болезней известны нам с древних времен. Например, в Вавилонском эпосе о Гильгамеше (2000 г. до н. э.) и в нескольких главах Ветхого Завета.

Древнегреческий историк при описании эпидемии чумы в Афинах в 430 г. до н. э. поведал миру о том, что переболевшие и выжившие от чумы люди никогда не заражаются ею повторно.

Другой историк времен римского императора Юстиниана, описывая эпидемию бубонной чумы в Риме, также обращал внимание на невосприимчивость переболевших людей к повторному заражению и называл это явление латинским термином immunitas.

В XI в. Авиценна выдвинул свою теорию приобретенного иммунитета. Позже эту теорию развил итальянский врач Джироламо Фракасторо. Авиценна и Фракасторо полагали, что все болезни вызываются мелкими «семенами». А иммунитет к оспе у взрослых объясняется тем, что, переболев в детстве, организм уже выбросил из себя тот субстрат, на котором могут развиваться «семена оспы».

По преданиям, профилактика заболевания черной оспой существовала еще в античном Китае. Там это делали так: здоровым детям в нос вдували через серебряную трубочку порошок, полученный из истолченных сухих корочек с оспенных язвочек больных оспой людей. Причем мальчикам вдували через левую ноздрю, а девочкам — через правую.

Похожая практика имела место в народной медицине многих стран Азии и Африки. Из истории вакцинации от оспы известно, что с начала XVIII в. практика противооспенных прививок пришла и в Европу. Эту процедуру называли вариоляцией (от лат. variola — оспа). По сохранившимся документам, в Константинополе начали прививать оспу с 1701 г. Прививки не всегда заканчивались добром, в 2-3% случаев от прививок оспы умирали.

Но в случае пришествия дикой эпидемии смертность составляла до 15-20%. Кроме того, выжившие от оспы оставались с некрасивыми щербинами на коже, в том числе и на лице. Поэтому сторонники прививок уговаривали людей решаться на них хотя бы ради красоты лица своих дочерей (как, например, в «Философских тетрадях» Вольтера и в романе «Новая Элоиза» Жан Жака Руссо).

Из Константинополя в Англию идею и материал для прививки оспы привезла леди Мэри Монтегю. Она сделала вариоляцию своим сыну и дочери и убедила привить детей принцессу Уэльскую. Но прежде чем подвергнуть Риску детей из королевской семьи, прививку сделали шести заключенным, пообещав им освобождение, если они хорошо перенесут вариоляцию. Заключенные не заболели, и в 1722 г. принц и принцесса Уэльские привили от оспы двух своих дочерей, чем подали монарший пример жителям Англии.

С 1756 г. практика вариоляции, также добровольная, имела место и в России. Как известно, оспу привила Екатерина Великая.

Таким образом, как функция защищенности организма от заразных болезней иммунитет был известен людям с древности.

Ну, а возбудителей болезней человек получил возможность изучать только с появлением и развитием методов микроскопии.

Кто же создал вакцину против оспы согласно официальным источникам? Историю прививок против оспы в современной иммунологии начинают отслеживать с работ английского врача Эдварда Дженнера, который в 1798 г. опубликовал статью, где описал свои испытания прививок коровьей оспы сначала одному 8-летнему мальчику и затем еще 23 людям. Через 6 недель после прививки Дженнер рискнул привить испытуемым натуральную человеческую оспу — люди не заболели.

Дженнер был врачом, но испытанный им метод придумал не он. Он обратил профессиональное внимание на практику отдельных английских фермеров. В документах осталось имя фермера Бенджамина Джести, который в 1774 г. попробовал вцарапывать вязальной иглой содержимое пустул оспы коров своей жене и ребенку с целью их защиты от заболевания черной оспой.

Дженнер разработал врачебную технику оспопрививания, которую он назвал вакцинацией (vaccina — по-латыни коровья). Этот термин из истории первых прививок от оспы «дожил» до наших дней и давно получил расширенное толкование: вакцинацией называют любую искусственную иммунизацию с целью защиты от болезни.

А что же касательно истории открытия других вакцин, кто создал прививки от таких инфекционных заболеваний, как туберкулез, холера, чума и так далее? В 1870-1890 гг. благодаря развитию методов микроскопии и методов культивирования микроорганизмов Луи Пастер (стафилококк), Роберт Кох (туберкулезная палочка, холерный вибрион) и другие исследователи, врачи (А. Нейссер, Ф. Леффлер, Г. Хансен, Э. Клебс, Т. Эшерих и др.) открыли возбудителей более 35 заразных болезней.

Имена первооткрывателей остались в названиях микробов — нейссерии, палочка Леффлера, клебсиелла, эшерихии и т.д.

Имя Луи Пастера связано с историей вакцинации самым непосредственным образом. Он показал, что заболевания можно экспериментально вызывать путем введения в здоровые организмы определенных микробов. Он вошел в историю как создатель вакцин против куриной холеры, сибирской язвы и бешенства и как автор метода ослабления заразности микробов путем искусственных обработок в лаборатории.

По преданию, Л. Пастер открыл этот метод случайно. Он (или лаборант) забыл пробирку с культурой холерного вибриона в термостате, культура перегрелась. Ее, тем не менее, ввели подопытным курам, но те холерой не заболели.

Побывавших в опыте кур не выкинули из соображений экономии, а через какое-то время вновь использовали в экспериментах по заражению, но уже не испорченной, а свежей культурой холерного вибриона. Однако эти куры опять не заболели. Л. Пастер обратил на это внимание, подтвердил в других экспериментах.

Вместе с Эмилем Роуксом Л. Пастер исследовал различные штаммы одного и того же микроорганизма. Они показали, что разные штаммы проявляют различную патогенность, т.е. вызывают клинические симптомы разной степени тяжести.

В последовавшее столетие медицина энергично внедрила пастеровский принцип изготовления вакцинирующих препаратов путем искусственного ослабления (аттенуации) диких микробов.

Продолжалось изучение механизмов защиты от инфекционных болезней. История создания вакцины была бы неполной без Эмиля фон Беринг и его коллег Ш. Китасато и Е. Вернике.

В 1890 г. они опубликовали работу, в которой показали, что сыворотка крови, т.е. жидкая бесклеточная часть крови от людей, переболевших дифтерией или столбняком, способна инактивировать этот токсин. Феномен назвали антитоксическими свойствами сыворотки и ввели термин «антитоксин».

Антитоксины были отнесены к белкам, и более того — к белкам-глобулинам.

В 1891 г. Пауль Эрлих назвал противомикробные вещества крови термином «антитело» (по-немецки antikorper), так как бактерий в то время называли термином korper — микроскопические тельца.

Дальнейшая история прививок в России и других странах

В 1899 г. JI. Детре (сотрудник И.И. Мечникова) ввел термин «антиген» для обозначения субстанций, в ответ на которые организм животных и человека способен вырабатывать антитела.

В 1908 г. П. Эрлиху вручили Нобелевскую премию за гуморальную теорию иммунитета.

Одновременно с П. Эрлихом в 1908 г. Нобелевскую премию за клеточную теорию иммунитета получил великий русский ученый Илья Ильич Мечников (1845-1916). Современники И.И. Мечникова отзывались об его открытии как о мысли «гиппократовского масштаба». Сначала ученый как зоолог обратил внимание на то, что определенные клетки беспозвоночных морских животных поглощают твердые частицы и бактерий, проникших во внутреннюю среду.

Затем (1884 г.) он увидел аналогию между этим явлением и поглощением белыми клетками крови позвоночных животных микробных телец. Эти процессы наблюдали до И.И. Мечникова и другие микроскописты. Но только И.И. Мечников осознал, что это явление не есть процесс питания данной единичной клетки, а защитный процесс в интересах целого организма.

И.И. Мечников первым рассматривал воспаление как защитное, а не разрушительное явление.

Дальнейшая история прививок в России и других странах развивалась семимильными шагами.

Научный спор между клеточной (И.И. Мечников и его ученики) и гуморальной (П. Эрлих и его сторонники) теориями иммунитета длился более 30 лет и способствовал развитию иммунологии как науки.

Первыми институтами, где работали первые иммунологи, были институты микробиологии (Институт Пастера в Париже, Институт Коха в Берлине и др.). Первым специализированным иммунологическим институтом стал Институт Пауля Эрлиха во Франкфурте.

Следующий нестандартно мыслящий иммунолог — Карл Ландштейнер. В то время как почти все современные ему иммунологи изучали механизмы защиты организма от инфекций, К. Ландштейнер замыслил и осуществил исследования по образованию антител в ответ не на микробные антигены, а на самые разные другие вещества. В 1901 г. он открыл группы крови АВО (антигены эритроцитов и антитела — агглютинины) (в настоящее время это система АВН). Это открытие имеет глобальные последствия для человечества, может быть, даже для его судьбы как вида.

В течение 3-4 десятилетий середины XX в. биохимики узнали, какие есть варианты молекул иммуноглобулинов и какова структура молекул этих белков. Были открыты 5 классов, 9 изотипов иммуноглобулинов. Последним был идентифицирован иммуноглобулин класса Е.

Наконец, в 1962 г. Р. Портер предложил модель структуры молекул иммуноглобулинов. Она оказалась универсальной для иммуноглобулинов всех типов и совершенно верной и по сегодняшний день наших знаний.

Затем была разгадана загадка разнообразия антиген-связывающих центров антител.

Многие ученые-иммунологи были удостоены Нобелевской премии.

С конца 80-х гг. XX в. наступила пора новейшей истории иммунологии. В этой области работают тысячи исследователей и врачей во всем мире, и не в последнюю очередь — в России.

Совершенствуется производство вакцин против различных болезней.

Быстро накапливаются новые факты, которые помогают понять и объяснить обществу, чего нельзя делать, чтобы окончательно не погубить не нами созданную жизнь на нашей планете.

Сегодня известно два вида оспы — натуральная и более безопасная ветряная, прививка от оспы позволила свести заболеваемость во всем мире к нулю. Эпидемии натуральной оспы были распространены на территории Европы и России с 10 века, хотя отдельные упоминания об этой болезни встречаются и в древнеримских источниках. Природные очаги оспы расположены в Индии, Китае и Восточной Сибири, именно здесь инфекция появилась впервые.

В 10 веке в Индии и Китае болезнь уносила до 30% всего населения, в Европу оспа была занесена солдатами Александра Македонского, после чего болезнь была распространена по всему материку турками-османами в ходе завоевательных походов.

Смертность от натуральной оспы составила 50-70%, болезнь была распространена настолько сильно, что в Франции в полицейских сводках шрамы после оспы считались официальной приметой. Болезнь была окончательно побеждена только в 1980-х, последний случай был зарегистрирован в Бангладеше в 1978 г.

В связи с ликвидацией болезни вакцина от оспы была отменена уже в 1980 х годах. В настоящее время существует несколько непривытых от оспы поколений, родившихся после восьмидесятых. В последнее время черная оспа перешла на человекоподобных обезьян, что вызывает обеспокоенность вирусологов и эпидемиологов. Сегодня вновь возрастает вероятность перехода болезни на человеческую популяцию, если коллективный иммунитет, существующий за счет ранее привитых поколений, полностью исчезнет.

В России прививка от оспы в плановом режиме показана тем, кто может заразиться инфекцией по роду деятельности. Существует также запас вакцин для прививания людей при активизации вируса на территории страны. Противооспенная вакцина бывает трех видов:

  1. Сухая живая вакцина (вводится накожно).
  2. Сухая инактивированная (применяется в рамках двухэтапной вакцинации).
  3. Эмбриональная живая, в таблетках, для орального применения.

Таблетки используются исключительно для активации иммунитета к болезни ранее привитых людей. В инактивированной сухой вакцине содержатся убитые вирусы оспы, вакцина применяется для первичного прививания, для создания иммунитета требуется две дозы. Сухая вакцина с живыми ослабленными вирусами используется для экстренного прививания, для формирования иммунитета достаточно одной дозы. Вакцинация от оспы требует применения специальных стерильных инструментов, оспенная вакцина содержит ослабленные вирусы, получаемые методом их выращивания на кожных покровах телят.

Массовая вакцинация от оспы не проводится, исключение составляет группа риска, вакцинация таких людей проводится в обязательном порядке. Обязательной вакцинации подлежат:

  • Сотрудники территориальных органов по эпидемиологическому надзору.
  • Врачи, санитарки и медсестры больниц и инфекционных отделений.
  • Врачи, санитарки и лаборанты лабораторий вирусологии.
  • Врачи, санитарки и медицинские сестры дезинфекционных подразделений.
  • Весь персонал больниц, скорой помощи и выездных бригад, который работает в очаге распространения оспы.

В плановом порядке предусмотрена двухэтапная вакцинация от так называемой черной оспы. На первом этапе подкожно вводится инактивированная вакцина, через неделю на на втором этапе на кожной поверхности плеча ставится вторая прививка. Повторная вакцинация проводится через 5 лет. Ученые, разрабатывающий противооспенные препараты, обязаны проходить ревакцинацию каждые 3 года.

При обнаружения заболевания черной оспой на территории РФ, вакцинацию должны проходить все проживающие в регионе люди, а также все сотрудники, направляемые в эту местность для выполнения работы.

В случае вспышки заболевания прививку должны поставить даже те, кто прошел вакцинацию ранее. Помимо этого, все контактировавшие ранее с пациентом люди также должны быть привиты.

Перед введением препарата пациент доложен пройти тщательное обследование, в ходе которого выявляются перенесенные и хронические заболевания, аллергии, также проводятся анализы крови и мочи. При необходимости снимается ЭКГ или электроэнцефалограмма, проводится флюорография. Отдельно выявляется наличие в окружении пациента больных, страдающих экземами, дерматитами и иммунодефицитами. Контакты с привитым от оспы таких больных ограничиваются сроком на 3 недели по причине их высокой подверженности вирусу.

Сегодня многие люди уже не помнят, делали ли им какие -то прививки от оспы, так как практически у всех есть шрам на плече, но никто не помнит против чего это прививка вводилась. В СССР отмена вакцинации произошла в 1982 г., все родившиеся позднее этого года люди у же не прививались. За шрамом от оспы часто принимают шрам от туберкулеза, отличить их можно по размеру. Противооспенный шрам достигает 5-10 мм в диаметре, кожа несколько утоплена и имеет измененный рельеф. Поверхность шрама покрыта неровностями в виде точек и неровностей, напоминающих рытвины. Родившиеся после 1982 г. прививались против туберкулеза, вакцина оставляет после себя небольшой шрам с гладкой поверхностью, количество которых может составлять 1 или 2. Если в процессе заживания прививки образовывалась большая корочка (диаметром до 1 см), размеры шрама могут напоминать прививку от оспы.

Прививка не входит в список обязательных, если человек по каким-то причинам нуждается в вакцинации, это можно сделать в любом возрасте при условии отсутствия противопоказаний. Дети, при необходимости, прививаются не ранее 1 года.

Ветряная оспа не представляет большой опасности, но может провоцировать серьезные последствия в виде опоясывающего лишая и неврологических симптомов. Вакцинация от ветряной оспы применяется в развитых странах с 70-х годов 20 века. За время её использования было проведено множество наблюдений, действие препарата хорошо изучено. Прививка от ветрянки защищает человека от инфекции в течение 20 и более лет, может вводиться детям от 1 года.

Для формирования стойкого иммунитета взрослым и подросткам с 13 лет показано двукратное введение вакцины. Введение прививки не обеспечивает стопроцентный иммунитет, вероятность заражения все же остается. Но характер протекания болезни будет достаточно легким, а риск развития болезни сведен к минимуму. Во взрослом возрасте болезнь переносится гораздо труднее, осложнения развиваются в 30 – 50 раз чаще. Непривитый и неболевший ветрянкой в детском возрасте человек для предотвращения развития заболевания должен пройти вакцинацию.

В детском возрасте ветрянка проходит в легкой форме, осложнения встречаются редко. Из-за родства вируса с нервными тканями могли наблюдаться поражения центральной нервной системы. У перенесших заболевание в зрелом возрасте заболевание может вызвать опоясывающий лишай. Безобидная на первый взгляд инъекция может спровоцировать серьезные проблемы в будущем.

Оспа или, точнее, натуральная оспа — острозаразное заболевание. Единственным источником этой болезни являлся больной человек. Оспа передавалась при непосредственном контакте здорового человека с больным либо через посредство любых вещей и предметов, загрязненных больными. Вирус оспы относится к числу стойких микроорганизмов. Длительное время он может сохраняться в содержимом «оспин» (корочках оспенных поражений на коже) или в выделениях слизистых оболочек полости рта и дыхательных путей. Нательное или постельное белье больных также являлось заразным. Английский эпидемиолог Сталлибрас описал вспышку натуральной оспы среди персонала прачечной, куда попало белье больного натуральной оспой. Вирус стоек к высушиванию и сохраняется некоторое время даже в пыли. Заболевание было крайне опасным и давало огромную смертность.

В прошлом делались попытки предохранять людей от оспы у разных народов по-разному. Использовались, например, корочки из высохших оспенных «пузырьков», делали уколы в кожу иглами, смоченными содержанием таких оспенных «пузырьков», которые брали у больных. Надеялись, вызвав легкую форму оспы, предохранить людей от натуральной оспы. Не всегда это удавалось, но страх перед грозной болезнью был столь велик, что в надежде на спасение шли на большой риск.

Первая надежная вакцина для прививок против оспы была создана в XVIII столетии английским врачом Эдуардом Дженнером.

Для истории оспы интересными являются такие факты: вирус оспы впервые описан в конце XIX века, подтверждено это открытие в начале XX века, а вакцина Дженнера была создана гораздо раньше — в конце XVIII столетия! Так, не имея чистой культуры вируса оспы, вакцина все же была получена. Как это произошло?

Из своего врачебного опыта и рассказов крестьян Дженнер знал, что оспой болеют животные и, в частности, коровы. Подмечено было также и то, что человек, заразившись коровьей оспой, становится невосприимчивым к натуральной оспе. Даже во время грозных эпидемий оспы такие люди не болели. При коровьей оспе возникает поражение на вымени, поэтому чаще заражались доильщицы коров, у которых оспенные пузырьки развивались обычно местное — на кистях рук. В народе хорошо знали, что коровья оспа никакой опасности для человека не представляет, оставляя на коже рук лишь легкие следы от бывших оспенных пузырьков.

Заинтересовавшись этим, Дженнер решил проверить народное наблюдение, при этом он думал — «нельзя ли умышленно возбуждать коровью оспу, чтобы предохранить от натуральной оспы». Долгих двадцать пять лет длилось это наблюдение, но Дженнер не торопился с выводами. С большим терпением и исключительной добросовестностью скромный сельский врач оценивал и изучал каждый случай. Что он мог сказать, когда на руках доильщиц коров появились оспенные пузырьки? Конечно, это доказывало, то человек может заразиться коровьей оспой и Дженнер действительно много раз наблюдал подобные заражений. Но я должен убедиться также и в том, говорил Дженнер, что во время эпидемий оспа таких людей щадит. Отдельные случаи не убедительны, ведь это может быть чистой случайностью. Я должен убедиться в закономерности того, что, заразившись коровьей оспой, человек станет невосприимчивым к натуральной оспе, а для этого нужны не один и не два, а много случаев. Долгих двадцать пять лет Дженнер терпеливо продолжал наблюдение. И, наконец, замечательный труд был вознагражден. Дженнер пришел к заключению, что передающееся в веках народное поверье оказалось истиной.

Будучи уверенным в возможности предохранения человека при помощи коровьей оспы, Дженнер решается делать прививки коровьей оспы людям. Обычно первые прививки против оспы связывают со знаменитой прививкой коровьей оспы мальчику Джеймсу Фиппсу. В истории оспопрививания дата 14 мая 1796 года отмечается как начало дженнеровских прививок. В те времена Дженнера даже упрекали в том, что он ставит опыты на людях, однако новые материалы рисуют облик Эдуарда Дженнера совсем с иной стороны. По данным английского ученого Бернарда Глемзера, первым пациентом Дженнера был его десятилетний сын — маленький Эдуард. Ему первому Дженнер сделал прививку против оспы. Это было началом той драматической ситуации, которую Дженнеру пришлось пережить, делая прививки другому ребенку. Им и был 8-летний мальчик Джеймс Фиппс.

Итак, первые прививки детям были сделаны. Безвредность их была очевидной, но надо было еще доказать благодетельные результаты этой прививки, убедиться, что привитой ребенок не заболеет, если его заразить натуральной оспой. И после мучительных колебаний Дженнер решается на этот тяжелый шаг. Своего сына и Джеймса Фиппса Дженнер заразил. Все обошлось благополучно. Дета не заболели. Начало оспопрививанию коровьей оспой было положено, но для Дженнера это был путь, полный драматизма и тяжелых переживаний.

Как ни велико было открытие Дженнера и его метода, начало оспопрививания оказалось вместе с тем и началом трудного тернистого пути. Много пришлось пережить ученому, вынести травлю мракобесов и лжеученых. Потребовалось «еще много десятилетий, пишет академик АМН СССР О. В. Бароян, чтобы этому методу пробиться через пелену косности и сопротивления, критики и насмешек…».

Шли годы. Постепенно во многих странах убедились, что Дженнер дал безопасный способ использования коровьей оспы против натуральной оспы человека. Со временем пришло признание и на родине Дженнера в Англии.

На фоне страшных эпидемий оспы создание надежного оружия против этой болезни было великим событием. Об этом образно и ярко сказал в свое время выдающийся ученый Ж- Кювье. Если бы открытие вакцины, говорил он, осталось единственным, которое медицина сделала, его одного было бы достаточно, чтобы навсегда прославить нашу эпоху в истории науки и сделать бессмертным имя Дженнера, отводя ему почетное место среди главнейших благодетелей человечества.

С годами метод Дженнера совершенствовался. Вакцину против оспы в большом масштабе получают в институтах и лабораториях. Отбираются здоровые телята (даже определенной масти), которые содержатся в гигиенических условиях и заражаются оспой. Для этого используется специальная разновидность вакцинного вируса оспы. Перед заражением на боках и животе телят шерсть выбривают, кожу тщательно моют и дезинфицируют. Через несколько дней после заражения, когда созревают оспенные пузырьки и в них накопится большое количество вируса оспы, с соблюдением строгих гигиенических правил, собирают материал, содержащий безвредный для человека возбудитель — вирус коровьей оспы.

После специальной обработки вакцины выпускаются для оспопрививания в виде непрозрачной сиропообразной жидкости, Разработаны и другие методы получения вакцины против оспы, например, тканевая (выращенная в клеточных культурах), яичная (выращенная в куриных зародышах).

Вакцинация против оспы сыграла огромную роль в ликвидации оспы на нашей планете. Это великий памятник врачу-гуманисту Эдуарду Дженнеру. Его открытие стало поистине истоком гениальной идеи о живых вакцинах.

18 января 1926 г. В Москве состоялась премьера ленты Сергея Эйзенштейна Броненосец Потемкин, вошедшей в десятку лучших фильмов всех времен и народов.

18 января 1936 г. Умер английский писатель, лауреат Нобелевской премии Джозеф Редьярд Киплинг.

19 января 1906 г. Вышел в свет первый номер украинского сатирического журнала Шершень.

20 января 1946 г. Президент США Гарри Трумэн основал Центральную разведывательную группу, которая впоследствии стала ЦРУ.

23 января 1921 г. Агентом ЧК был убит украинский композитор Николай Леонтович. Его обработка Щедрика известна во всем мире как рождественская колядка Carol of the Bells .

Оспой — заразной вирусной инфекцией — люди болели еще в древности. В документах Древних Индии и Египта описывается течение недуга. Сперва повышается температура, больные жалуются на ломоту в костях, рвоту, головную боль, а затем появляются многочисленные пузырьки, быстро покрывающие всю кожу. Смертность при этом заболевании составляла 40 процентов. Те, кому удалось победить недуг, оставались изуродованными: оспенные рубцы уже никогда не заживали. Врачи искали способы победить эту заразу. Здорового человека заражали оспой, надеясь, что вирус вызовет более слабую форму болезни и при этом поможет в выработке иммунитета. В Китае еще до нашей эры целители брали корочки с подсохших оспенных язв, высушивали их, измельчали и получившийся порошок вдували в ноздри здоровым людям. В Индии такой же порошок втирали в специально сделанную ранку на коже. В Турции делали укол иглой, смоченной гноем из оспенной язвы. Эта процедура называлась вариоляцией. В результате этих манипуляций пациенты иногда переносили оспу в легкой форме, но многие умирали.

Английский врач Эдвард Дженнер в возрасте восьми лет был подвергнут вариоляции, чуть не стоившей ему жизни. Получив медицинскую степень, Дженнер стал сельским врачом. Ему приходилось наблюдать смерть от оспы многих пациентов, но он был бессилен им помочь. Узнав, что доярки, переболевшие коровьей оспой, оказывались невосприимчивы к оспе натуральной, Дженнер сделал прививки коровьей оспы своему сыну и его кормилице. Результаты были положительными, но коллеги не поддержали новатора. Тем не менее врач продолжал эксперименты и в 1796 году сделал прививку против оспы ребенку, получив согласие его родителей. Он воспользовался материалом из раны женщины, заразившейся коровьей оспой. Мальчик чувствовал себя хорошо, и через две недели исследователь привил ему натуральную человеческую оспу, но заболевания не последовало. Результаты своих экспериментов Дженнер изложил в статье, представленной Королевскому научному обществу. В научных и общественных кругах Европы эксперименты Эдварда Дженнера подвергались критике, при этом его труды были переведены на другие языки, а практика прививок в течение 10 лет распространилась по всему миру.

В память о прививке Эдварда Дженнера по предложению отца микробиологии Луи Пастера все прививочные материалы стали называть вакцинами — от латинского слова vacca (корова). Изначально вакцинация имела узкое применение. Расширил ее границы Луи Пастер. Он изобрел вакцины от сибирской язвы, бешенства. Разными путями — от убеждения до принуждения — внедрялась массовая вакцинация. Благодаря государственным программам вакцинации заболеваемость натуральной оспой постепенно уменьшалась и к 1947 фактически сошла на нет в Европе и США, однако продолжала оставаться серьезной проблемой для большинства стран Азии, Африки и Южной Америки. В 1967 Всемирная организация здравоохранения (ВОЗ) приняла программу полного искоренения натуральной оспы во всем мире, и в 1980 году оспа была полностью побеждена.

У вакцинации, как и у всякого медицинского вмешательства, есть сторонники и противники. Действительно, многие вакцины имеют побочные эффекты. Особенно много вопросов вызывают комбинированные вакцины от нескольких видов заболеваний. Любая прививка — это вмешательство в одну из самых загадочных и тонких систем организма — иммунную, поэтому делать прививки можно лишь после консультации с врачом и использовать только проверенные вакцины.

Подготовила Светлана ВИШНЕВСКАЯ, ФАКТЫ

Впервые оспа была диагностирована более 3000 лет назад в Древней Индии и Египте. Длительное время это заболевание было одним из самых страшных и беспощадных. Многочисленные эпидемии, охватывающие целые континенты, уносили жизни сотен тысяч людей. История свидетельствует о том, что в XVIII столетии Европа ежегодно теряла 25% взрослого населения и 55% детей. И только в конце XX века Всемирной организацией здравоохранения была официально признана полная ликвидации оспы в развитых странах мира.

Победа над этим, а также рядом других, не менее смертоносных заболеваний стала возможной благодаря изобретению метода вакцинации. Впервые вакцину создал английский доктор Эдвард Дженнер. Идея прививки от возбудителя коровьей оспы пришла молодому врачу в голову в момент беседы с дояркой, руки которой покрывала характерная сыпь. На вопрос о том, не больна ли крестьянка, та ответила отрицательно, подтвердив, что уже переболела коровьей оспой ранее. Тогда Дженджер вспомнил, что среди его пациентов даже на пике эпидемии не встречались люди данной профессии.

Читайте также:  Вакцин против ветряной оспы окавакс

В течение долгих лет доктор занимался сбором сведений, подтверждающих предохранительные свойства коровьей оспы по отношению к натуральной. В мае 1796 года Дженнер решился на проведение практического эксперимента. Он привил восьмилетнему Джеймсу Фиппсу лимфу оспяной пустулы человека, заразившегося коровьей оспой, а несколько позже – содержимое пустулы другого больного. На этот раз в ней присутствовал возбудитель натуральной оспы, но мальчик не заразился.

Повторив эксперимент несколько раз, в 1798 году Дженнер опубликовал научный доклад, касающийся возможности предотвращения развития заболевания. Новая методика получила поддержку светил медицины, и в том же году вакцинация была проведена среди солдат английской армии и матросов флота. Сам Наполеон, несмотря на противостояние английской и французской короны в те времена, велел изготовить золотую медаль в честь величайшего открытия, которое впоследствии спасло жизни сотен тысяч человек.

Первая прививка против оспы в России была сделана в 1801 году. В 1805-м вакцинация была принудительно введена во Франции. Благодаря открытию Дженнера стала возможной эффективная профилактика гепатита В, краснухи, столбняка, коклюша, дифтерии и полиомиелита. В 2007 году в США была разработана первая в истории вакцина против рака, с помощью которой ученым удалось справиться с вирусом папилломы человека.

Оспа в Античном и Новом Мире

Шрамы от оспы на мумифицированых останках фараона Рамзеса V свидетельствуют о наших длительных отношениях с этой болезнью. Болезнью, уникальной как для людей, так и вируса, убившего миллионы людей. Распространяющаяся через контакт с живыми или уже умершими телами вирусоносителей — это было особенно жестоко для сообществ, которые ранее небыли знакомы с подобными ужасами. Например, по крайней мере треть ацтеков умерла в мучениях после того, как испанские колонизаторы принесли оспу в Новый свет в 1518 году.

Выжившие после оспы несли отметки оспы всю жизнь. Некоторых оставались слепыми, фактически все из них были изуродованы шрамами. С 16 века болезнь охватила большинства стран мира, рябые лица были привычным зрелищем, собственно никто даже не обращал внимания. Некоторые более состоятельные выжившие использовали разного рода косметику, чтобы скрыть повреждения или покрывали свои лица белым свинцовым порошком. Бледное как смерть лицо Елизаветы I было признаком перенесенной оспы.

Хотя, переболевшие оспой получали неоспоримое преимущество перед нетронутыми — пожизненный иммунитет. Однако, поскольку иммунитет не был вещью передающейся по наследству, город, подкошенный оспой ранее с оставшимися выжившими жителями, был готов для другого прихода заболевания поколением позже. Идея предотвращать эпидемий путем стимулирования иммунитета была впервые использована в Китае. Там примитивная форма прививки существовала уже в десятом столетии нашей эры. Иммунитет создавался вызывая умеренную форму болезни у здоровых людей, например вдуванием струпьев оспы в виде порошка в нос. В Древней Индии брамины втирали струпья оспы в ссадины на коже.

Эти местные знания были, вероятно, переданы странствующими практиками и простым сарафанным радио. К началу 18 века, прививки от оспы известная как вариоляция уже была распространена в некоторых частям Африки, Индии и Османской империи. Именно с этим и столкнулась Леди Мэри Уортли Монтэгу в 1717, когда она стала свидетелем данной практики у местных крестьянок, выполняющих прививки на сезонных “праздниках оспы”. При возвращении в Великобританию таким образом она привила своих детей во время вспышки в 1721.

Мазер, Онисим и эпидемии в Бостоне

В том же самомо году на другой стороне Атлантики, Бостон был также поражен оспой. Коттон Мазер (Cotton Mather). ведущий священник, который чуть ранее слышал о прививках от Онисима (Onesimus) — его рабочего раба-африканца, который прививался еще ребенком. Прививки уже практиковались в Африке. Вдохновленный знанием Онисима, Мазер начал кампанию за прививки перед лицом растущей эпидемии. Его пропаганда имела крайне ограниченный успех и была встречена с большой враждебностью. Но действия Леди Монтэгу, Онисима и Мазера в конечном счете ускорили внедрение в практику вакцинации на Западе.

Эдвард Дженнер, английский сельский врач и увлеченный исследователь, позже разработавший первую эффективную вакцину от оспы, путем введение пациенту неопасного вируса коровьей оспы. Ранее он замечал, что местные жители, которые перенесли коровью оспу получили иммунитет от гораздо более опасной человеческой оспы, он успешно впервые искусственно воспроизвел появление подобного иммунитета в эксперименте на местном мальчике Джеймсе Фиппсе в 1796 году.

Медленное отступление оспы

Адаптация Дженнер древней техники был самый первый вестник для ряда других вакцин разработанных в следующие пару столетий. Ставшей обязательной в 1853 году, вакцинация против оспы сделало прививание обязательным элементом современного цивилизованного общества. В настоящий момент прививание против оспы уже не практикуется. Ставшей первой в силу исторических причин, прививка от оспы сейчас вытеснила оспу на обочину человеческих страхов. Всемирная программа вакцинации против оспы была закончена в 1979 году, достигнув своих целей. Последний документированный прецедент заражения оспой естественным путем был зафиксирован в 1977 году в Сомали.

14 мая 1796 года произошло знаменательное для медицины, да и всей биологической науки событие: английский медик Эдуард Дженнер в присутствии врачебной комиссии внес восьмилетнему мальчику в надрезы кожи на руке (привил) жидкость, взятую им из пузырьков, имевшихся на кистях рук женщины, заразившейся при дойке больной коровы, так называемой оспой коров. Через несколоько дней на месте надрезов на руке образовались язвочки, у мальчика повысилась температура, появился озноб. Спустя некоторое время язвочки подсохли и покрылись сухими корочками, которые затем отпали, обнажив небольшие рубцы на коже. Ребенок полностью выздоровел.

Через месяц Дженнер сделал весьма рискованный шаг – он заразил этого мальчика тем же способом, но уже гноем из накожных пузырьков от больного страшным заболеванием – натуральной оспой. Человек в таком случае должен был неприменно тяжело заболеть, кожа его покрыться множеством пузырьков, и он мог в итоге с вероятностью 20 – 30 % (один человек из 3 –5 заболевших) умереть. Однако гениальность Дженнера как раз в том и состояла, что он был уверен: его пациент от натуральной оспы не умрет и даже не заболеет в той форме, какая обычно встречается. Так и случилось: мальчик не заболел. Впервые было доказано, что человека можно заразить легкой формой схожего заболевания (оспой коров) и после выздоравления он приобретает надежную защиту от такого грозного заболевания, как натуральная оспа. Возникающее состояние невосприимчивости к инфекционному заболеванию получило название «иммунитет» (от англ. immuhity – невосприимчивость.)

И хотя о природе возбудителей, как оспы коров, так и натуральной оспы в то время ничего не было известно, тем не менее, метод прививок против оспы, предложенный Дженнером и названный вакцинацией (от лат. vaccus — корова), быстро получил широкое распространение. Так, в 1800 году в Лондоне было вакцинировано 16 тысяч человек, а в 1801 году — уже 60 тысяч. Постепенно этот метод защиты от оспы завоевал всеобщее признание и стал широко распространяться по странам и континентам.

Однако наука, изучающая механизмы формирования иммунитета, — иммунология возникла лишь в конце XIX века после открытия бактерий. Большой импульс зарождению и развитию иммунологии дали работы великого французского микробиолога Луи Пастера, который первым доказал, что микроб убивающий может стать микробом, защищающим от инфекции, если в лаборатории ослабить его патогенные свойства. В 1880 году он доказал возможность профилактической иммунизации против куриной холеры ослабленным возбудителем, в 1881 году провел свой сенсационный опыт по иммунизации коров против сибирской язвы. Но поистине знаменитым Пастер стал после того, как 6 июля 1885 года привил ослабленный возбудитель смертельного заболевания – бешенства мальчику, покусанному бешеной собакой. Вместо неминуемой гибели этот мальчик остался жив. Причем в отличие от бактерий сибирской язвы и куриной холеры возбудителя бешенства Пастер увидеть не смог, но он со своими сотрудниками научился размножать этого возбудителя в мозгу кроликов, затем мозг умерших кроликов сушили, выдерживали определенное время, в результате чего добивались ослабления возбудителя. Как выражение признания заслуги Дженнера в разработке метода иммунизации против оспы свой метод защиты от бешенства Пастер также назвал вакцинацией. С тех пор все способы профилактического прививания против инфекционных заболеваний называют вакцинацией, а препараты, которые при этом используют, — вакцинами.

Важное открытие в 1890 году сделали Беринг и Китасато. Они обнаружили, что после иммунизации дифтерийным или столбнячным токсином в крови животных появляется некий фактор, способный нейтрализовать или разрушить соответствующий токсин и тем самым предотвратить заболевание. Вещество, которое вызывало обезвреживание токсина, получило название антитоксина, затем был введен более общий термин — «антитело», а то, что вызывает образование этих антител, назвали антигеном. Теория образования антител была создана в 1901 году немецким врачом, микробиологом и биохимиком П. Эрлихом . В настояще время известно, что все позвоночные от примитивных рыб до человека обладают высокоорганизованной иммунной системой, которая до конца ещё не изучена. Антигены — это вещества, несущие признаки генетически чужеродной информации. Антигенность присуща, прежде всего, белкам, а также и некоторым сложным полисахаридам, липополисахаридам и иногда препаратам нуклеиновых кислот. Антитела — это особые защитные белки организма, называемые иммуноглобулинами. Антитела способны связываться с антигеном, вызвавшим их образование, и инактивировать его. Агрегаты «антиген – антитело» в организме обычно удаляются фагоцитами, открытыми знаменитым русским учёным Ильёй Мечниковым в 1884 году, либо разрушаются системой комплимента. Последняя состоит из двух десятков различных белков, которые находятся в крови и взаимодействуют друг с другом по строго определенной схеме . Со времен И. И, Мечникова и П. Эрлиха понятие об иммунитете значительно расширилось. Гуморальный иммунитет — это невосприимчивость организма к той или иной инфекции, обусловленная наличием специфических антител. Различают естественный (врожденный) гуморальный иммунитет, обусловленный генетически (выработанный в филогенезе), и приобретенный, выработанный в течение жизни индивидуума. Приобретенный иммунитет может быть активным, когда организм сам вырабатывает антитела, и пассивным, когда вводятся готовые антитела. Активный приобретенный иммунитет может вырабатываться при попадании в организм возбудителя из внешней среды, что либо сопровождается возникновением заболевания (постинфекционный иммунитет), либо проходит незамечено. Приобретенный активный иммунитет можно получить, если ввести в организм антиген в виде вакцины. Именно на создание активного противоинфекционного иммунитета и расчитана вакцинопрофилактика .

Все вакцины можно разделить на две основные группы: инактивированные и живые.

Инактивированные вакцины подразделяются на следующие подгруппы: корпускулярные, химические, рекомбинантные вакцины, к этой же подгруппе могут быть отнесены и анатоксины. Корпускулярные (цельновирионные) вакцины представляют собой бактерии и вирусы, инактивированные путем химического (формалин, спирт, фенол) или физического (тепло, ультрафиолетовое облучение) воздействия или комбинацией обоих факторов. Для приготовления корпускулярных вакцин используют, как правило, вирулентные штаммы микроорганизмов, поскольку они обладают наиболее полным набором антигенов. Для изготовления отдельных вакцин (например, антирабической культуральной) используют аттенуированные штаммы. Примерами корпускулярных вакцин являются коклюшная (компонент АКДС-вакцины), антирабическая, лептоспирозная, гриппозные цельновирионные инактивированные вакцины, вакцины клещевого и японского энцефалита и ряд других препаратов. Помимо цельновирионных в практике используют также расщепленные, или дезинтегрированные, препараты (сплит – вакцины), в которых структурные компоненты вириона разъединены с помощью детергентов.

Химические вакцины представляют собой антигенные компоненты, извлечённые из микробной клетки, которые определяют иммуногенный потенциал последней. Для их приготовления используют различные физико-химические методики. К такого рода вакцинам относятся вакцины менингококковые групп А и С полисахаридные, вакцина против гемофильной инфекции типа В полисахаридная, вакцина пневмококковая полисахаридная, вакцина брюшнотифозная – Vi-антиген брюшнотифозных бактерий. Так как бактериальные полисахариды являются тимуснезависимыми антигенами, для формирования Т-клеточной иммунной памяти используют их конъюгаты с белковым носителем (дифтерийным или столбнячным анатоксином в количестве, не стимулирующем выработку соответствующих антител, или с белком самого микроба, например наружной оболочки пневмококка). К этой же категории могут быть отнесены субъединичные вирусные вакцины, содержащие отдельные структурные компоненты вируса, например субъединичная гриппозная вакцина, состоящая из гемагглютинина и нейроминидазы. Важная отличительная особенность химических вакцин – их низкая реактогенность. Рекомбинантные вакцины. В качестве примера можно назвать вакцину против гепатита В, для производства которой применяют рекомбинантную технологию . В 60-е годы было обнаружено, что в крови больных гепатитом В, кроме вирусных частиц (вирионов) диаметром 42 нм находятся небольшие сферические частицы со средним размером 22 нм в диаметре. Оказалось, что частицы 22 нм состоят из молекул белка оболочки вириона, который назван поверхностным антигеном вируса гепатита В (HBsAg), и обладают высокими антигенными и протективными свойствами. В 1982 году было обнаружено, что при эффективной экспрессии искусственного гена поверхностного антигена вируса гепатита В, в клетках дрожжей происходит самосборка изометрических частиц диаметром 22 нм из вирусного белка . Белок HBsAg выделяют из дрожжевых клеток путём разрушения последних и подвергают очистке с помощью физических и химических методов. В результате последней полученный препарат HBsAg полностью освобождается от дрожжевой ДНК и содержит лишь следовое количество белка дрожжей . Частицы 22 нм HBsAg, полученные методом генной инженерии, по структуре и иммуногенным свойствам практически не отличаются от природных. Мономерная же форма HBsAg обладает значительно меньшей иммуногенной активностью. В 1984 году в эксперименте на добровольцах было продемонстрировано, что получаемая генноинженерная молекулярная вакцина (22 нм-частицы) против гепатита В вызывает в организме человека эффективное образование вируснейтрализующих антител. Данная «дрожжевая» молекулярная вакцина явилась первой генноинженерной вакциной, которая была разрешена для использования в медицине. До сих пор она обеспечивает единственный надежный способ массовой защиты от гепатита В .

Инактивированные бактериальные и вирусные вакцины выпускаются как в сухом (лиофилизированном), так и в жидком виде. Последние, как правило, содержат консервант. Для создония полноценного иммунитета обычно необходимо двукратное или трехкратное введение инактивированных вакцин. Развивающийся после этого иммунитет относительно кратковременен, и для поддержания его на высоком уровне требуются ревакцинации. Анатоксины (в ряде стран применительно к анатоксинам используется термин «вакцина») представляют собой бактериальные экзотоксины, обезвреженные длительным воздействием формалина при повышенной температуре. Подобная технология получения анатоксинов, сохраняя антигенные и иммуногенные свойства токсинов, делает невозможной реверсию их токсичности. В прцессе производства анатоксины подвергаются очистке от балластных веществ (питательной среды, других продуктов метаболизма и распада микробной клетки) и концентрации. Эти процедуры снижают их реактогенность и позволяют использовать для иммунизации небольшие объёмы препаратов. Для активной профилактики токсинемических инфекций (дифтерии, столбняка, ботулизма, газовой гангрены, стафилококковой инфекции) применяют препараты анатоксинов, сорбированных на различных минеральных адсорбентах. Адсорбция анатоксинов значительно повышает их антигенную активность и иммуногенность. Это обусловлено, с одной стороны, созданием депо препарата в месте его введения с постепенным поступлением антигена в систему циркуляции, а с другой — адъювантным действием сорбента, вызывающего вследствие развития местного воспаления усиление плазмоцитарной реакции в регионарных лимфатических узлах.

Анатоксины выпускают в виде монопрепаратов (дифтерийный, столбнячный, стафилококковый и др.) и ассоциированных препаратов (дифтерийно-столбнячный, ботулинический трианатоксин). В последние годы разработан препарат коклюшного анатоксина, который в ряде зарубежных стран вошел в число компонентов бесклеточной коклюшной вакцины. В России коклюшный анатоксин рекомендован к практическому применению в виде монопрепарата для вакцинации доноров, сыворотка (плазма) которых используется для изготовления иммуноглобулина человека коклюшного антитоксического, предназначенного для лечения тяжёлых форм коклюша. Для достижения напряженного антитоксического иммунитета требуются, как правило, двукратное введение препаратов анатоксинов и последующаа ревакцинация. При этом их профилактическая эффективность достигает 95-100% и сохраняется в течение нескольких лет. Важной особенностью анатоксинов является также и то, что они обеспечивают в организме привитого сохранение стойкой иммунной памяти. Поэтому при повторном их введении людям, полноценно привитым 10 лет назад и более, происходит быстрое образование антитоксина в высоких титрах. Именно это свойство препаратов обусловливает оправданность их применения при постэкспозиционной профилактике дифтерии в очаге и столбняка в случае экстренной профилактике. Другой, не менее важной особенностью анатоксинов является их относительно низкая реактогенность, что позволяет свести к минимуму перечень противопоказаний к применению.

Живые вакцины изготовляются на основе аттенуированных штаммов со стойко закрепленной авирулентностью. Будучи лишенными способности вызывать инфекционную болезнь, они, тем не менее, сохранили способность к размножению в организме вакцинированного. Развивающаяся вследствие этого вакцинальная инфекция, хотя и протекающая у большинства привитых без выраженных клинических симптомов, тем не менее, приводит к формированию, как правило, стойкого иммунитета. Вакцинные штаммы, применяемые в производстве живых вакцин, получают разными путями: путем выделения аттенуированных мутантов от больных (вакцинный штамм вируса паротита Geryl Lynn) или из внешней среды путем селлекции вакцинных клонов (штамм СТИ сибирской язвы) длительного пассирования в организме экспирементальных животных и куриных эмбрионов (штамм 17 D вируса желтой лихорадки). Для быстрого приготовления безопасных вакцинных штаммов, предназначенных для изготовления живых гриппозных вакцин, в нашей стране используют методику гибридизации «актуальных» эпидемических штаммов вирусов с холодоадаптированными штаммами, безвредными для человека. Наследование от холодоадаптированного донора хотя бы одного из генов, кодирующего негликозилированные белки вириона, ведет к утрате вирулентности. В качестве же вакцинных штаммов используют рекомбинанты, унаследовавшие не менее 3 фрагментов из генома донора. Иммунитет, развивающийся после прививок большинством живых вакцин, сохраняется значительно дольше, чем после прививок инактивированными вакцинами. Так, после однократного введения коревой, краснушной и паротитной вакцин продолжительность иммунитета достигает 20 лет, вакцины желтой лихорадки – 10 лет, туляремийной вакцины – 5 лет. Этим определяются и значительные интервалы между первой и последующей прививкой данными препаратами. Вместе с тем для достижения полноценного иммунитета к полиомиелиту трехвалентную живую вакцину на первом году жизни вводят трёхкратно, а ревакцинации проводят на втором, третьем и шестом году жизни. Ежегодно осуществляют иммунизацию живыми гриппозными вакцинами. Живые вакцины, за исключением полиомиелитной, выпускаются в лиофилизированном виде, что обеспечивает их стабильность в течение относительно длительного срока.

Как живые, так и инактивированные вакцины чаще используют в виде монопрепаратов.

Назначение консервантов — химических веществ, оказывающих бактерицидное действие, — состоит в обеспечении стерильности инактивированных вакцин, выпущенных стерильными. Последняя может быть нарушена в результате образования микротрещин в отдельных ампулах, несоблюдения правил хранения препарата во вскрытой ампуле (флаконе), при проведении процедуры вакцинации. ВОЗ рекомендует использование консервантов, прежде всего для сорбированных вакцин, а также для препаратов, выпускаемых в многодозовой расфасовке. Наиболее распространенным консервантом, как в России, так и во всех развитых странах мира является мертиолат (тиомерсал), представляющий собой органическую соль ртути, не содержащую, естественно, свободной ртути. Содержание мертиолата в препаратах АКДС-вакцины, анатоксинов, вакцине против гепатита В и других сорбированных препаратах (не более 50 мкг в дозе), требования к его качеству и методам контроля в нашей стране не отличаются от таковых в США, Великобритании, Франции, Германии, Канаде и других странах. Поскольку мертиолат неблагоприятно влияет на антигены инактивированных полиовирусов, в зарубежных препаратах, содержащих инактивированную полиомиелитную вакцину, в качестве консерванта используют 2-феноксиэтанол.

О минеральных сорбентах, обладающих адъювантными свойствами, сказано выше. В России в качестве последних используют алюминия гидроксид, а за рубежом — преимущественно алюминия фосфат. К числу других стимуляторов антителообразования можно отнести N-оксидированное производное поли-1,4-этиленпиперазина — полиоксидоний, который входит в состав отечественной инактивированной тривалентной гриппозной полимерсубъединичной вакцины Гриппол. Перспективными адъювантами при энтеральной иммунизации являются холерный токсин и лабильный токсин Е. Colli, стимулирующие образование секреторных Ig –a- антител. В настоящее время проходят испытания и другие виды адъювантов. Их практическое использование позволяет снизить антигенную нагрузку препарата и тем самым уменьшить его реактогенность.

Вторая группа включает вещества, присутствие которых в вакцинах обусловленно технологией их производства (гетерологичные белки субстрата культивирования, антибиотики, вносимые в культуру клеток при производстве вирусных вакцин, компоненты питательной среды, вещества, используемые для инактивации). Современные методы очистки вакцин от этих балластных примесей позволяют свести содержание последних к минимальным величинам, регламентируемым нормативной документацией на соответствующий препарат. Так, по требованиям ВОЗ, содержание гетерологичного белка в парентерально вводимых вакцинах не должно превышать 0,5 мкг в прививочной дозе. Наличие в анамнезе прививаемого сведений о развитии аллергических реакций немедленного типа на вещества, входящие в состав конкретного препарата (сведения о них содержатся в водной части инструкции по применению), является противопоказанием к его применению.

— создание ассоциированных вакцин на основе существующих монопрепаратов;

— расширение номенклатуры вакцин;

— использование новых технологий .

Ассоциированные вакцины. Разработка новых комплексных вакцин имеет важное значение для решения медицинских, социальных и экономических аспектов проблемы вакцинопрофилактики . Использование ассоциированных вакцин уменьшает количество визитов к врачу, необходимых при раздельной иммунизации, обеспечивая тем самым более высокий (на 20 %) охват детей прививками в декретированные сроки. Помимо этого, при использовании ассоциированных препаратов в значительной степени снижается травматизация ребенка, а также нагрузка на медицинский персонал .

В начале ХХ столетия существовало мнение о жёсткой конкуренции между антигенами при их совместном введении и невозможности создания сложных комплексных вакцин. Впоследствии это положение было поколеблено. При правильном подборе вакцинных штаммов и концентрации антигенов в комплексных вакцинах можно избежать сильного отрицательного действия компонентов вакцин друг на друга. В организме существует огромное разнообразие субпопуляций лимфоцитов, обладающих разными видами специфичности. Практически каждый антиген (даже синтетический) может найти соответствующий клон лимфоидных клеток, способных отвечать выработкой антител или обеспечивать формирование эффекторов клеточного иммунитета. Вместе с тем, комплексная вакцина не является простой смесью антигенов, взаимное влияние антигенов при их совместном введении возможно. В некоторых случаях иммуногенность вакцины падает, если её включить в состав комплексного препарата. Это наблюдается даже если достигнуто оптимальное соотношение компонентов вакцины.

Первая комплексная убитая вакцина против дифтерии, брюшного тифа и паратифа была использована во Франции в 1931 году для проведения противоэпидемических мероприятий в частях армии и флота. В 1936 году в вакцину был введен столбнячный анатоксин. В 1937 году в Советской Армии стали применять убитую вакцину против брюшного тифа, паратифа и столбняка. Для профилактики кишечных инфекций применяли тривакцину (брюшной тиф, паратиф А и В) и пентавакцину (брюшной тиф, паратиф А и В, дизентерия Флекснера и Зонне). Недостатком живых и убитых комплексных вакцин была их высокая реактогенность, а при введении живых комплексных вакцин наблюдался и феномен интерференции, зависящий от взаимного влияния используемых в ассоциациях микробных штаммов. В связи с этим начались интенсивные работы по созданию химических (растворимых) многокомпонентных вакцин, лишенных недостатков корпускулярных вакцин и названных «ассоциированными вакцинами». Ассоциированная вакцина НИИСИ была разработана сотрудниками НИИ Советской Армии под руководством Н. И. Александрова из антигенов возбудителей брюшного тифа, паратифа А и В, дизентерии Флекснера и Зонне, холерного вибриона и столбнячного анатоксина. Полные соматические О — антигены, входящие в состав вакцины были получены из возбудителей кишечных инфекций путём глубокого их расщепления с помощью трипсина. После осаждения спиртом антигены соединяли со столбнячным анатоксином. В качестве адъюванта был использован фосфат кальция. В 1941 году были приготовлены первые лабораторные серии поливакцины. Производство её было освоено в Институте вакцин и сывороток им. И. И. Мечникова. Состав вакцины был несколько изменён: исключён холерный компонент, а фосфат кальция заменен на гидроокись алюминия. Реактогенность вакцины была ниже, чем у корпускулярных комплексных вакцин. Вакцина оправдала себя в суровых условиях Великой Отечественной войны, она была эффективной при однократном введении (трёхкратная вакцинация в условиях войны была невозможной). Вместе с тем, вакцина не была лишена недостатков. Широкие эпидемиологические исследования, проведённые в 1952 году, показали недостаточную активность дизентерийного антигена, который в 1963 году был исключен из поливакцины. Для достижения стойкого иммунитета было рекомендовано повторное введение препарата. Для нужд армии в 50 – 60-х годах проведена большая работа по созданию ассоциированных вакцин из анатоксинов. Были созданы ботулинические трианатоксин и пентаанатоксин, а также различные варианты полионатоксинов из гангренозных, ботулинических и столбнячных анатоксинов. Количество антигенов в ассоциированных вакцинах достигало 18. Такие вакцины применялись для иммунизации лошадей с целью получения поливалентной гипериммунной сыворотки. В начале 40-х годов одновременно во многих странах началась разработка препаратов, состоящих из различных комбинаций дифтерийного, столбнячного анатоксинов и коклюшного микробов. В Советском Союзе АКДС-вакцина стала применяться в 1960 году, нормативная документация на препарат была разработана М. С. Захаровой. В 1963-1965 годах АКДС-вакцина вытеснила неадсорбированные коклюшно-дифтерийную и коклюшно-дифтерийно-столбнячную вакцины. АКДС-вакцина по эффективности была равна этим препаратам, а по реактогенности — ниже, так как содержала в 2 раза меньше микробов и анатоксинов. К сожалению, АКДС-вакцина до сих пор остается наиболее реактогенным препаратом среди всех коммерческих ассоциированных вакцин.

На основании многолетних исследований комплексных вакцин можно сформулировать основные положения по конструированию и свойствам таких вакцин.

(1) – Комплексные вакцины могут быть получены при многих сочетаниях однотипных и разнотипных моновакцин (живых, убитых, химических и пр.). Наиболее совместимыми и эффективными являются вакцины, сходные по физико-химическим свойствам, например, белковые, полисахаридные, живые вирусные вакцины и др.

(2) — Теоретически число компонентов в ассоциированных вакцинах может быть неограниченным.

(3) — «Сильные» в иммунологическом отношении антигены могут угнетать активность «слабых» антигенов, что зависит не от числа антигенов, а от их свойств. При введении комплексных препаратов может происходить запаздывание и быстрое угасание иммунного ответа на отдельные компоненты по сравнению с ответом на моновакцины.

(4) — Дозы «слабых» антигенов в вакцине должны быть выше по сравнению с дозами других компонентов. Возможен и другой подход, который заключается в снижении доз «сильных» антигенов с максимального уровня до уровня среднеэффективных доз.

(5) — В некоторых случаях наблюдается феномен синергии, когда один компонент вакцины стимулирует активность другого антигенного компонента.

(6) — Иммунизация комплексной вакциной существенно не влияет на интенсивность иммунного ответа при введении других вакцин (при соблюдении определенного интирвала после вакцинации комплексным препаратом).

(7) — Побочная реакция организма на ассоциированную вакцину не является простой суммой реакций на моновакцины. Реактогенность комплексной вакцины может быть равной, несколько выше или ниже реактогенности отдельных вакцин .

К ассоциированным препаратам, выпускаемым в России, относятся вакцины АКДС, менингококковая А + С, а также АДС-анатоксины. Значительно большее количество ассоциированных вакцин выпускается за рубежом. К ним можно отнести: вакцину против коклюша, дифтерии, столбняка, полиомиелита (инактивированную) и гемофильной инфекции типа в — ПЕНТАктХИБ; вакцину против кори, краснухи, эпидемического паротита — MMR, Приорикс. В настоящее время за рубежом проходят клинические испытания такие ассоциированные препараты, как 6-валентная вакцина, содержащая дифтерийный и столбнячный анатоксины, бесклеточную коклюшную вакцину, HBsAg, конъюгированный полисахарид Н. influenzae b, инактивированную полиомиелитную вакцину; 4-валентная живая вирусная вакцина против кори, краснухи, эпидемического паротита и ветряной оспы; комбинированная вакцина против гепатита А и В; гепатита А и брюшного тифа и ряд других препаратов. В последние несколько лет в России разработаны и находятся на стадии государственной регистрации новые ассоциированные вакцины: комбинированная вакцина против гепатита В, дифтерии и столбняка (Бубо-М) и комбинированная вакцина против гепатита А и В. В стадии разработки находится также комбинированная вакцина против гепатита В, дифтерии, столбняка и коклюша.

За рубежом получены рекомбинантные вирусы вакцины, способные к экспрессии антигенов вирусов кори, гепатита А и В, японского энцефалита, герпеса простого, бешенства, Хантаан, денге, Эпштейна-Барр, ротавирусов, лепры, туберкулеза. При этом разработанные в США вакцины, предназначенные для профилактики кори, японского энцефалита, папилломатоза человека, геморагической лихорадки с почечным синдромом (восточный серотип), уже проходят клинические испытания. Несмотря на то, что за рубежом в качестве вектора используют штаммы вируса вакцины с относительно низкой вирулентностью (NYCBOH, WR), практическое использование подобных рекомбинантных вакцин в значительной степени будет затруднено в связи с давно известными свойствами данного вируса вызывать развитие как неврологических (поствакцинальный энцефалит), так и кожных (вакцинальная экзема, генерализованная вакциния, ауто — и гетероинокуляция) форм поствакцинальных осложнений при обычно применяемом скарификационном способе вакцинации. При этом следует иметь в виду, что обе формы поствакцинальной патологии, особенно первая, значительно чаще развиваются при первичной вакцинации, а их частота находится в прямой зависимости от возраста прививаемого. Именно в связи с этим для предотвращения осложнений в России разработана вакцина таблетированная оспенно-гепатитная В для орального применения, которая проходит первую фазу клинических испытаний.

Что касается сальмонеллезного вектора, то на его основе за рубежом созданы и изучаются препараты столбнячного и дифтерийного анатоксинов, вакцины для профилактики гепатита А, инфекций, вызваннных ротавирусами и энтеротоксигенной кишечной палочкой. Естественно, что последние два рекомбинантных препарата в связи с энтеральным введением сальмонелл представляются весьма перспективными. Изучается возможность использования в качестве микробных векторов вируса оспы канареек, бакуловирусов, аденовирусов, вакцины БЦЖ, холерного вибриона .

Новый подход к иммунопрофилактике в 1992 году предложили Танг с соавторами. Одновременно несколько групп учёных опубликовали в 1993 году результаты своих работ, подтвердивших перспективность этого нового направления исследований, получившего название днк-вакцины. Оказалось, что в организм можно просто вводить (внутримышечно) препарат гибридной плазмиды, содержащей ген протективного вирусного антигена. Происходящий при этом синтез вирусного белка (антигена) приводит к формированию полноценного (гуморального и клеточного) иммунного ответа. Плазмида является небольшой кольцевай двухцепочечной молекулой ДНК, размножающейся в бактериальной клетке. С помощью генетической инженерии в плазмиду можно встроить необходимый ген (или несколько генов), который затем сможет экспрессироваться в клетках человека. Целевой белок, кодируемый гибридной плазмидой, продуцируется в клетках, имитируя процесс биосинтеза соответствующего белка при вирусной инфекции. Это приводит к формированию сбалансированного иммунного ответа против данного вируса .

Вакцины на основе трансгенных растений. С помощью методов генной инженерии представляется возможным «внедрить» чужеродные гены почти во все технические сельскохозяйственные культуры, получив при этом стабильные генетические трансформации. С начала 90-х годов проводятся исследования по изучению возможности использования трансгенных растений для получения рекомбинантных антигенов. Данная технология особенно перспективна для создания оральных вакцин, поскольку в этом случае рекомбинантные белки, образуемые трансгенными растениями, могут действовать непосредственно, вызывая оральную иммунизацию. Естественно, что это происходит в тех случаях, когда растительный продукт используется как пища, не подвергаясь при этом термической обработке. Помимо использования растений как таковых, образуемый ими антиген может извлекаться из растительного сырья.

В первоначальных исследованиях была использована модель: табак — HBsAg. Из листьев трансгенных растений выделен вирусный антиген, по своим иммуногенным свойствам почти не отличающийся от рекомбинантного HBsAg, продуцируемого клетками дрожжей. В дальнейшем получен трансгенный картофель, продуцирующий антиген энтеротоксигенной кишечной палочки и антиген вируса Norwalk. В настоящее время начаты исследования по генетической трансформации бананов и сои.

Подобного рода «растительные вакцины» весьма перспективны:

— во-первых, в ДНК растений может быть встроено до 150 чужеродных генов;

— во-вторых, они, будучи пищевыми продуктами, применяются орально;

— в-третьих, их использование приводит не только к образованию системного гуморального и клеточного иммунитета, но и к развитию местного иммунитета кишечника, так называемого иммунитета слизистых (mucosal immunity). Последний особенно важен при формировании специфической невосприимчивости к кишечным инфекциям.

В настоящее время в США проводится 1 фаза клинических испытаний вакцины энтеротоксигенной кишечной палочки, представляющей собой лабильный токсин, экспрессированный в картофель. В ближайшем будущем технология рекомбинантных ДНК станет ведущим принципом конструирования и изготовления вакцин.

Антиидиотипические вакцины. Их создание коренным образом отличается от ранее описанных методик получения вакцин и заключается в изготовлении ряда моноклональных антител к идиотипам молекул иммуноглобулина, обладающего протективной активностью. Препараты таких антиидиотипических антител по своей пространственной конфигурации подобны эпитопам исходного антигена, что позволяет использовать эти антитела взамен антигена для иммунизации. Подобно всем белкам, они способствуют развитию иммунной памяти, что весьма важно в тех случаях, когда введение соответствующих антигенов не сопровождается её развитием. Вакцины в биодеградируемых микросферах. Инкапсуляция антигенов в микросферы представляет собой заключение их в защитные полимеры с образованием специфических частиц. Наиболее часто используемым для этих целей полимером является poly-DL-lactide-co-glycolide (PLGA), который в организме подвергается биодеградации (гидролизу) с образованием молочной и гликолевой кислот, являющихся нормальными продуктами обмена веществ. При этом скорость выделения антигена может варьировать от нескольких дней до нескольких месяцев, что зависит как от размеров микросфер, так и от соотношения лактида к гликолиду в диполимере. Так, чем большим будет содержание лактида, тем медленнее будет происходить процесс биодеградации. Поэтому при однократном применении смеси микросфер с коротким и длительным временем распада представляется возможным использовать подобный препарат и для первичной, и для последующей вакцинации. Именно этот принцип был использован при разработке препарата столбнячного анатоксина, который в настоящее время проходит клиническое испытание. В то же время следует отметить, что использование подобного препарата представляет определённую опасность при применении его у сенсибилизированного субъекта, у которого в ответ на вакцинацию возникнет тяжёлая аллергическая реакция. Если бы подобная реакция развивалась при первом введении адсорбированного столбнячного анатоксина, то повторная вакцинация была бы ему противопоказана, между тем она неминуемо произойдёт при применении микрокапсульной формы.

Помимо столбнячного анатоксина, в США в клинических испытаниях изучается микрокапсульная форма инактивированной гриппозной вакцины, предназначенной для парентерального применения.

Микрокапсулированные вакцины могут быть также использованы и при непарентеральных (оральном, интраназальном, интравагинальном) методах введения. В этом случае их введение будет сопровождаться развитием не только гуморального, но и местного иммунитета, обусловленного продукцией IgA-антител. Так, при оральном введении микросферы захватываются М-клетками, представляющими собой эпителиальные клетки пейеровых бляшек. При этом заахват и транспортирование частиц зависят от их размера. Микросферы диаметром более 10 мкм выделяются пейеровыми бляшками, диаметром 5-10 мкм остаются в них и утилизируются, а диаметром менее 5 мкм диссеминируются по системе циркуляции.

Использование биодеградируемых микросфер принципиально позволяет провести и одномоментную иммунизацию несколькими антигенами .

Наиболее распространённый метод изготовления липосом — механическая дисперсия. При этой процедуре липиды (например, холестерин) растворяют в органическом растворителе (обычно в смеси хлороформа и метанола) и затем высушивают. К образующейся при этом липидной плёнке добавляют водный раствор, в результате чего образуются многослойные пузырьки. Липосомы оказались весьма перспективной формой при использовании в качестве антигенов пептидов, поскольку они стимулировали при этом образование как гуморального, так и клеточного иммунитета. В настоящее время в ветеринарной практике используются липосомальные вакцины против болезни Ньюкастла и реовирусной инфекции птиц. В Швейцарии в Swiss Serum and Vaccine Institute впервые разработана лицензированная липосомальная вакцина пртив гепатита А — Epaxal-Berna и проходят испытание липосомальные вакцины для парентеральной иммунизации против гриппа; гепатита А и В; дифтерии, столбняка и гепатита А; дифтерии, столбняка, гриппа, гепатита А и В.

В США осуществляется клиническое испытание липосомальной гриппозной вакцины из гемагглютинина и проходит доклиническое изучение вакцина липосомальная менингококковая В.

Хотя в большинстве исследований липосомы использовались для системной иммунизации, имеются работы, свидетельствующие об их успешном применении для иммунизации через слизистые ЖКТ (вакцина эшерихиозная, шигеллёзная Флекснера) и верхних дыхательных путей, при этом развивается как общий, так и местный секреторный иммунитет.

Синтетические пептидные вакцины. Альтернативной иммунизации живыми и инактивированными вакцинами являются идентификация пептидных эпитопов антигена, которые определяют необходимый иммунный ответ, и использование синтетических аналогов этих пептидов для производства вакцин. В отличие от традиционных вакцинных препаратов данные вакцины, будучи целиком синтетическими, не несут в себе риска реверсии или неполной инактивации, помимо этого, эпитопы могут быть селекционированы и освобождены от компонентов, которые определяют развитие побочного действия. Использование пептидов создаёт возможность изготовления антигенов, которые в обычных условиях не распознаются. К последним относятся «собственные» антигены, такие как опухолевоспецифические антигены при различных формах рака. Пептиды могут быть конъюгированы с носителем или инкорпорированы в него. В качестве носителя возможно использование белков, полисахаридов, полимеров, липосом. При доклинических испытаниях подобного рода препаратов приобретает особое значение изучение возможных перекрестных реакций образуемых антител с тканями человека, поскольку образовавшиеся аутоантитела могут стать причиной развития аутоиммунных патологических состояний.

Пептидные вакцины могут быть присоединены к макромолекулярным носителям (например, к столбнячному анатоксину) или использоваться в комбинации с бактериальным липидным мицелием.

В.Ф. Учайкин; О.В. Шамшева Вакцинопрофилактика: настоящее и будущее. М., 2001 г.

Соросовский общеобразовательный журнал. 1998 г. № 7.

Журнал микробиологии, эпидемиологии и иммунологии. 2001 г. № 1.

Вопросы вирусологии. 2001 г. № 2.

Журнал микробиологии, эпидемиологии и иммунологии. 1999 г. № 5.

источник