Меню Рубрики

Генетический материал вируса оспы

Инструкция для террориста

В январе журнал PLOS One опубликовал статью канадских исследователей, посвященную воссозданию в лаборатории вируса оспы лошадей – того самого, на основе которого Эдвард Дженнер в XVIII веке сделал первую в мире вакцину (Noyce et al., Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments). Несмотря на то, что эксперименты были проведены несколько лет назад, статью приняли к публикации только сейчас. Фактически, статья продемонстрировала, что с относительно доступными технологиями ныне не существующий в природе вирус можно запросто синтезировать и воссоздать в лаборатории.

В связи с этим научная общественность раскололась на два лагеря: критики вопрошают, зачем вообще нужно было это делать и зачем журнал опубликовал статью? Вдруг ею захотят воспользоваться террористы, чтобы воссоздать смертоносный вирус черной оспы? Сторонники авторов, напротив, говорят, что статью нужно было опубликовать обязательно и что она должна стать поводом для формирования новых этических и законодательных норм, касающихся синтетической биологии.

Эпидемии натуральной, или черной, оспы практически непрерывно свирепствовали в Азии в Средние века и регулярно вспыхивали в Европе в Новое время вплоть до изобретения в конце XVIII века английским врачом Дженнером вакцины против нее. По легенде, Дженнер заметил, что коровы и лошади болеют особой формой оспы, а люди, работающие с ними, почти никогда не заражаются черной оспой. Врач предположил, что если заразить человека коровьей оспой, это предохранит его от развития более тяжелой формы заболевания. Свое предположение Дженнер успешно проверил на мальчике по имени Джеймс Фиппс. После этого вакцинация безопасной формой оспы вошла в общую практику и эпидемии оспы в Европе прекратились, однако болезнь продолжала уносить жизни людей в Азии и Африке.


Коровья оспа (Wellcome Images)

В XX веке исследователи выяснили, что возбудителем черной оспы является ДНК-вирус из семейства Poxviridae. На базе безопасных для человека родственников черной оспы из того же семейства были разработаны вакцины, которые помогли окончательно победить оспу на планете. Последний случай заражения был зарегистрирован в 1977 году, а в 1980 на Ассамблее ВОЗ официально было объявлено об искоренении заболевания. В настоящее время образцы смертоносного вируса хранятся только в двух институтах в Атланте и в Новосибирске.

Несколько лет назад руководитель канадской фармацевтической компании Tonix Сет Ледерман (Seth Lederman) заинтересовался вирусом оспы, который Дженнер использовал для вакцинации. Как выяснил исследователь, вопреки распространенной легенде возбудитель, которого выделил Дженнер, скорее всего был вирусом лошадиной оспы, а не коровьей. По крайней мере, геном предков того самого вируса, при помощи которого искоренили оспу в Европе, оказался больше всего похож на вирус HPXV, циркулирующий среди лошадей и найденный 40 лет назад в Монголии.

С тех пор лошадиный вирус оспы тоже был забыт, и, вероятно, последний его образец хранился в США в Центре по контролю над инфекционными заболеваниями (CDC). Туда и обратился Ледерман, чтобы исследовать возможности вируса в качестве вакцины. По словам биотехнолога, вирусные вакцины, которые были распространены в XX веке (VACV), далеко ушли от своего предка и накопили нежелательные мутации, которые усилили их способность размножаться в клетках человека. В связи с этим вакцинация в редких случаях может вызвать серьезные побочные эффекты, такие как повреждение сердечной мышцы. Использование исходного вируса должно быть более безопасным.

Несмотря на благие цели, декларированные Ледерманом, вирус ему не дали. Тогда он обратился за помощью к вирусологу Дэвиду Эвансу (David H. Evans), и исследователи самостоятельно воссоздали вирус в лаборатории. Для того чтобы получить геном вируса, который состоит из 212 тысяч пар оснований, исследователи просто заказали синтез нескольких фрагментов ДНК в фирме, предоставляющей соответствующие услуги. Затем ученые собрали вирус из частей в клетках, зараженных родственным ему поксвирусом кроликов. Секвенирование генома подтвердило, что вирус HPXV успешно удалось воссоздать. Исследователи также заразили им мышей и показали, что по сравнению с VACV он легче переносится животными и действительно обеспечивает иммунитет против высокой дозы VACV.

Несмотря на некоторую практическую и академическую ценность статьи, ее отклонили в двух журналах. В середине 2017 года Ледерман послал пресс-релиз в журнал Science, благодаря чему эта история впервые получила огласку. Сама статья была опубликована в 2018 году в журнале PLOS One, и, хотя представители редакции заявили, что не увидели причин отклонять статью, публикация вызвала обеспокоенность научной общественности и специалистов по биобезопасности.


Частицы вируса оспы (CDC).

Дело в том, что черная оспа, в качестве прививки против которой и использовалась вакцина Дженнера, рассматривается как потенциальное биологическое оружие. Так как с начала 80-х годов XX века людей перестали прививать от оспы за ненадобностью, современная популяция не защищена от внезапной вспышки болезни. «Что если террористы захотят воссоздать в лаборатории вирус черной оспы? Теперь у них есть точная инструкция, как это сделать, в виде публикации Эванса и Ледермана», – обеспокоены критики статьи. Конечно, манипуляции с вирусом черной оспы запрещены Всемирной организацией здравоохранения, но вряд ли террористы будут оглядываться на запреты, если захотят это сделать.

Другим аргументом критиков является ненужность подобной вакцины на основе воссозданного вируса. Помимо VACV, были разработаны другие, более безопасные варианты, которые лишены побочных эффектов. К тому же специалистам вообще непонятно, зачем бизнесмену Ледерману нужна новая вакцина – очевидно, что сейчас для нее нет рынка.

В реальности, судя по некоторым фактам о Ледермане, им двигал не коммерческий интерес. Исследователь является большим поклонником Дженнера и пишет его биографию. Возможно, воссоздание исходной «вакцинии», при помощи которой знаменитый врач спас Европу, было подпитано горячим интересом Ледермана ко всему, что связано с его кумиром. Ради этого он даже не пожалел сто тысяч долларов, потраченных из бюджета компании Tonix на синтез генома вируса лошадиной оспы.

Надо сказать, что, несмотря на внимание, которое привлекла данная публикация, возможность воссоздания вируса оспы была продемонстрирована еще в 2002 году, когда исследователи клонировали геном VACV в бактериях. Инженерия патогенных вирусов в целом тоже не редкость в лабораториях – к примеру, совсем недавно мы рассказывали о модифицированном вирусе гриппа, который был собран также в целях создания вакцины. Более того, показательная история произошла в 2011 году, когда две статьи, посвященные вирусу птичьего гриппа H5N1, были запрещены к публикации в результате угрозы биотерроризма. В этих статьях были описаны модификации вируса, благодаря которым тот стал способен заражать не только птиц, но и млекопитающих. Появление подобных статей привело к мораторию на исследования вируса птичьего гриппа, который был отменен, лишь когда научной общественности удалось договориться о том, что польза от подобных исследований перевешивает вред.

Поэтому множество ученых поддерживает «реконструкторов» вируса лошадиной оспы. Подобные публикации демонстрируют возможности синтетической биологии и очерчивают новый круг проблем перед регуляторными организациями. Если даже исследования с довольно туманными негативными последствиями, типа экспериментов с эмбрионами человека, ограничены законодательно, синтез вирусов в лаборатории, способный причинить куда более ощутимый вред, должен быть поставлен под контроль. «Кто-то рано или поздно должен был это сделать», – говорят сторонники Эванса и Ледермана.

источник

Ученые давно стремятся выявить строение и роль вирусов. Они уникальны тем, что их классифицировали, как живые, так и неживые организмы в разные моменты истории биологии. Вирусы — это частицы, которые способны спровоцировать множества серьезных заболеваний, включая рак. Они не только заражают человека и животных, но и растения, бактерии и археи. Что делает вирусы такими интересными? Они примерно в 1000 раз меньше, чем бактерии, и их можно встретить практически в любой среде. Вирусы не могут существовать независимо от других организмов, так как должны паразитировать на живой клетке для воспроизведения.

Вирусная частица, также известная как вирион, представляет собой, по существу, нуклеиновую кислоту (ДНК или РНК), заключенную в оболочку белка. Вирусы чрезвычайно малы, диаметром приблизительно 20-400 нанометров. Крупнейший вирус, известный как Мимивирус, может иметь размер до 500 нанометров в диаметре. Для сравнения, человеческий эритроцит составляет около 6000-8000 нанометров в диаметре. В дополнение к малым размерам, вирусы также имеют различные формы. Подобно бактериям, некоторые вирусы имеют сферические или стержневые формы, а другие — икосаэдрические (полиэдр с 20 гранями) или спиральные формы.

Вирусы могут иметь двухцепочечную ДНК, двухцепочечную РНК, одноцепочечную ДНК или одноцепочечную РНК. Тип генетического материала, обнаруженного в конкретном вирусе, зависит от его природы и функции. Генетический материал обычно не подвергается воздействию, но покрывается белковым слоем, известным как капсид. Вирусный геном может состоять из очень небольшого числа или до нескольких сотен генов в зависимости от типа вируса. Обратите внимание, что геном обычно организован как длинная молекула, которая обычно является прямой или круговой.

Вирусы не способны самостоятельно реплицировать свои гены. Они должны полагаться на клетку-хозяина для воспроизведения. Чтобы вирусная репликация произошла, вирусу необходимо сперва заразить живую клетку. Вирус вводит свой генетический материал в клетку и использует органеллы клетки для репликации. После того, как было реплицировано достаточное количество вирусов, вновь образованные вирусы лизируют или разрывают клетку-хозяина и заражают другие клетки.

Белок, покрывающий вирусный генетический материал, известен как капсид. Капсид состоит из белковых субъединиц, называемых капсомерами. Капсиды могут иметь несколько форм: многогранник, стержень или комплекс. Они необходимы для защиты вирусного генетического материала от повреждений.

В дополнение к белковой оболочке у некоторых вирусов есть специализированные структуры. Например, вирус гриппа имеет мембраноподобную оболочку вокруг своего капсида. Добавки капсида также встречаются в бактериофагах. Например, бактериофаги могут иметь белковый «хвост», прикрепленный к капсиду, который используется для заражения бактерий-хозяев.

Вирусы вызывают ряд заболеваний в организмах, которые они заражают. Инфекции и заболевания человека, вызванные вирусами, включают лихорадку Эбола, ветряную оспу, корь, грипп, ВИЧ, герпес и многие другие. Вакцины эффективны для предотвращения некоторых типов вирусных инфекций, таких как оспа. Они работают, помогая организму построить ответ иммунной системы против конкретных вирусов.

Вирусные заболевания, которые воздействующие на животных, включают бешенство, ящур, птичий и свиной грипп. Заболевания растений включают мозаичное заболевание, кольцевая пятнистость, скручивание листьев и другие болезни листьев. Вирусы, известные как бактериофаги, вызывают заболевание у бактерий и археев.

источник

Вирус вызывает особо опасное высококонтагиозное инфекционное заболевание, характеризующееся общим поражением организма и обильной сыпью на коже и слизистых оболочках. В прошлом отмечались эпидемии и пандемии заболевания, сопровождающиеся высокой летальностью. В 1892 г. Г.Гварниери, исследуя под микроскопом срезы роговицы зараженного кролика, обнаружил специфические включения, впоследствии названные тельцами Гварниери, представляющие собой скопления вирусов натуральной оспы. Возбудитель оспы впервые обнаружен в световом микроскопе Е. Пашеном (1906).

Таксономия. Вирус натуральной оспы – ДНК-содержащий; относится к семейству Poxviridae (от англ, рох – язва), роду Orthopoxvirus.

Морфология, химический состав, антигенная структура. Вирус натуральной оспы является самым крупным вирусом, при электронной микроскопии имеет кирпичеобразную форму с закругленными углами размером 250-400 нм. Вирион состоит из сердцевины, имеющей форму гантели, двух боковых тел, расположенных по обе стороны от сердцевины, трехслойной наружной оболочки. Вирус содержит линейную двунитчатую ДНК, более 30 структурных белков, включая ферменты, а также липиды и углеводы.В составе вируса обнаружено несколько антигенов: нуклео-протеидный, растворимые и гемагглютинин. Вирус натуральной оспы имеет общие антигены с вирусом осповакцины (коровьейоспы).

Культивирование. Вирусы хорошо размножаются в куриных эмбрионах, образуя белые плотные бляшки на хорионаллантоисной оболочке. Репродукция вируса в культуре клеток сопровождается цитопатическим эффектом и образованием характерных цитоплазматических включений (телец Гварниери), имеющих диагностическое значение.

Резистентность. Вирусы оспы обладают довольно высокой устойчивостью к окружающей среде. На различных предметах при комнатной температуре сохраняют инфекционную активность в течение нескольких недель и месяцев; не чувствительны к эфиру и другим жирорастворителям. При температуре 100ºС вирусы погибают моментально, при 60ºС – в течение 15 мин, при обработке дезинфицирующими средствами (фенол, хлорамин) – в течение нескольких часов. Длительно сохраняются в 50 % растворе глицерина, в лиофилизированном состоянии и при низких температурах.

Восприимчивость животных. Заболевание, сходное по клиническим проявлениям с болезнью человека, можно воспроизвести только у обезьян. Для большинства лабораторных животных вирус оспы малопатогенен.

Эпидемиология. Натуральная оспа известна с глубокой древности. В XVII-XVIII вв. в Европе оспой ежегодно болело около 10 млн человек, из них умирало около 1,5 млн. Оспа являлась также главной причиной слепоты. На основании высокой контагиозности, тяжести течения и значительной летальности натуральная оспа относится к особо опасным карантинным инфекциям.

Источником инфекции является больной человек, который заразен в течение всего периода болезни. Вирус передается воздушно-капельным и воздушно-пылевым путями. Возможен контактно-бытовой механизм передачи – через поврежденные кожные покровы.В начале 20-х годов текущего столетия в результате применения оспенной вакцины удалось ликвидировать натуральную оспу в Европе, Северной Америке, а также в СССР (1936). Отечественные ученые В. М. Жданов, М. А. Морозов и др. обосновали возможность осуществления глобальной ликвидации оспы. В 1958 г. по предложению СССР Всемирная организация здравоохранения приняла резолюцию и разработала программу по ликвидации оспы во всем мире, которая была успешно выполнена благодаря глобальной противооспенной вакцинации людей. В 1977 г. в Сомали был зарегистрирован последний случай оспы в мире. Таким образом, оспа исчезла как нозологическая форма.

Патогенез и клиническая картина. Вирус оспы проникает в организм через слизистую оболочку дыхательных путей и реже через поврежденную кожу. Размножившись в регионарных лимфатических узлах, вирусы попадают в кровь, обусловливая кратковременную первичную вирусемию. Дальнейшее размножение вирусов происходит в лимфоидной ткани (селезенка, лимфатические узлы), сопровождается повторным массивным выходом вирусов в кровь и поражением различных систем организма, а также эпидермиса кожи, так как вирус обладает выраженными дерматотропными свойствами. Инкубационный период составляет 8-18 дней. Заболевание начинается остро, характеризуется высокой температурой тела, головной и поясничной болью, появлением сыпи. Для высыпаний характерна последовательность превращения из макулы (пятна) в папулу (узелок), затем в везикулу (пузырек) и пустулу (гнойничок), которые подсыхают с образованием корок. После отпадения корок на коже остаются рубцы (рябины). По тяжести течения различают тяжелую форму («черная» и сливная оспа) со 100% летальностью, среднюю с летальностью 20-40% и легкую с летальностью 1-2%. К числу легких форм натуральной оспы относится вариолоид – оспы у привитых. Вариолоид характеризуется отсутствием лихорадки, малым количеством оспенных элементов, отсутствием пустул или сыпи вообще.

Иммунитет. У переболевших людей формируется стойкий пожизненный иммунитет, обусловленный выработкой антител, интерферона, а также клеточными факторами иммунитета. Прочный иммунитет возникает также в результате вакцинации.

Лабораторная диагностика. Работа с вирусом натуральной оспы проводится в строго режимных условиях по правилам, предусмотренным для особо опасных инфекций. Материалом для исследования служит содержимое элементов сыпи на коже и слизистых оболочках, отделяемое носоглотки, кровь, в летальных случаях – кусочки пораженной кожи, легкого, селезенки, кровь. Экспресс-диагностика натуральной оспы заключается в обнаружении: а) вирусных частиц под электронным микроскопом; б) телец Гварниери в пораженных клетках; в) вирусного антигена с помощью РИФ, РСК, РПГА, ИФА и других специфических реакций. Выделение вируса осуществляют в куриных эмбрионах или клеточных культурах. Идентификацию вируса, выделенного из куриного эмбриона, проводят с помощью РН (на куриных эмбрионах), РСК или РТГА. Вирус, выделенный на культуре клеток, обладает гемадсорбирующей активностью по отношению к эритроцитам кур, поэтому для его идентификации используют реакцию торможения гемадсорбции и РИФ. Серологическую диагностику осуществляют с помощью РТГА, РСК, РН в куриных эмбрионах и на культурах клеток.

Читайте также:  Инфекционные болезни натуральная оспа

Специфическая профилактика и лечение. Живые оспенные вакцины готовят накожным заражением телят или куриных эмбрионов вирусом вакцины (осповакцины). Повсеместная вакцинация населения привела к ликвидации натуральной оспы на земном шаре и отмене с 1980 г. обязательного оспопрививания. Поэтому оспенные вакцины необходимо использовать только по эпидемическим показаниям с целью экстренной массовой профилактики. Методы введения вакцин – накожно или через рот (таб-летированная форма). После вакцинации формируется прочный иммунитет.

Для лечения натуральной оспы, помимо симптоматической терапии, применяли химиотерапевтический препарат – метисазон.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Вирус натуральной оспы

Вирус натуральной оспы (Variola major) из семейства ортопоксвирусов. Натуральная (черная) оспа — высокозаразное заболевание, передающееся контактным путем и приводящее к смерти в 40-90 процентах случаев. В конце XVIII века от него ежегодно умирало, по оценкам, до 400 тысяч европейцев. В XX веке оспа стала причиной от 300 до 500 миллионов смертей. Однако успешная всемирная прививочная кампания, начавшаяся в XIX веке, привела к полной победе над этим заболеванием в 1979 году. На сегодняшний день оспа считается единственной искорененной инфекцией.

Натуральная оспа – очень заразное заболевание. Заразны почти все выделения больного: мокрота, капельки слизи из зева и полости рта, разбрызгиваемые при кашле, чихании, крике. Заразны моча, кал. Вирус оспы долго сохраняется в постельном белье, домашних вещах, особенно в сухом состоянии. Заражение происходит либо непосредственно от больного, либо через зараженные предметы и вещи.

В 1886 г. Бьюст обнаружил возбудителя оспы. В 1906 г. Пашен предложил окрашивать вирионы специальной краской, позволяющей наблюдать их в световом микроскопе. Вирусы оспы довольно крупные и первыми были рассмотрены под микроскопом. Окрашенные вирионы получили название «тельца Пашена». Вирус оспы содержит двухцепочную линейную ДНК, размножается в цитоплазме клеток, образуя характерные включения.

Возбудитель оспы проникает в организм человека через верхние дыхательные пути (слизистую носоглотки) воздушно-капельным путем, а также через кожу. Затем возбудитель попадает в кровь, с током которой разносится по всему организму. Вирус интенсивно размножается в клетках костного мозга и печени, откуда опять попадает в кровь, затем – в большом количестве в клетки слизистой и кожи. Здесь вирус интенсивно размножается и вызывает типичное поражение, последовательно проходя стадии папулы, везикулы, пустулы, корочки и рубца. Покрытое «оспинами» лицо – типичное последствие перенесенной оспы. Оспенный больной заразен примерно с третьего дня после заражения (инкубационный период – до 12 дней) и до отпадения оспенных корочек.

Оспа известна с древнейших времен. Рукописные памятники Древнего Египта позволяют предполагать, что она возникла на территории Центральной Африки. Так, в египетском папирусе, составленном Аменофисом I за 4 тыс. лет до н.э., описана оспа. На коже мумии, захороненной в Египте за 3 тыс. лет до н.э., сохранились оспенные поражения. В древнейшем китайском трактате «Чеу-Чиуфа» упоминается оспа, которую китайцы называли «ядом из материнской груди» (1120 г. до н.э.). Первое классическое описание оспы сделал арабский врач Аль-Рази (IX–X в. н.э.). Ибн-Сина (980–1037) – первый врач, описавший оспу как заразную болезнь.

В прошлом оспа была самым опасным и распространенным заболеванием. Столетиями она свирепствовала в Азии, откуда в VI в. н.э. сарацины завезли ее в Европу.

В XVI — XVIII вв. произошел наиболее убийственный «расцвет» оспы, тогда от этой болезни умирал каждый третий ребенок. В Европе в отдельные годы оспой заболевало до 12 млн человек, 1,5 млн человек умирало.

Оспа была широко распространена в войсках и, передвигаясь с ними, страшнее войн опустошала целые области.

Древний историк Курциус (I в. до н.э.) писал, что оспа уничтожила воинов Александра Македонского, возвращающихся из завоеванной Индии.

Во время эпидемий оспа поражала молодых и старых, простолюдина и владыку, не щадя никого, проникала в хижину бедняка и во дворцы царей. От оспы умерли русский император Петр II, австрийский император Иосиф, короли Франции – Людовик XIV, Людовик XV, король Нидерландов Вильгельм II Оранский, королева Англии Анна.

Древний историк Тебезиус написал: «Никакой народ, никакая раса, никакое звание, никакой темперамент, ни возраст, ни пол не щадились оспой. Все трепетали перед ней».

Оспа приобретала чудовищную силу на территориях, куда она проникала впервые. В XVI в. конкистадоры завезли оспу в Америку. Возможно, это было первое бактериологическое оружие, использованное против людей: индейцам преднамеренно оставляли одеяла от больных оспой, развешивали на деревьях рубахи, пропитанные оспенным гноем.

В 1520 г., во время завоевания Мексики от оспы погибли 3,5 млн человек. Вымирали целые племена. Из оставленных очевидцами описаний следует, что «несметное количество трупов туземцев валялось в лесах». Страна опустела. В 1576 г. в Перу погибло свыше 2 млн человек.

В Средние века при возникновении оспы основной рецепт гласил: «Быстро, далеко, долго», т.е. предписывалось убираться быстро, далеко и долго не возвращаться.

В Европе даже в XVIII в. от оспы ежегодно погибало 0,5 млн человек. Многие из «благополучно» перенесших оспу слепли, лица их обезображивались.

В 1563 г. оспа была занесена в Бразилию. Во время эпидемии только в провинции Чату погибли 100 тыс. человек.

Методы заражения куриных эмбрионов: а – заражение в полость аллантоиса; б – заражение в амнион закрытым способом; в – заражение в амнион открытым способом; г – заражение на хорионаллантоисную оболочку

Путешествие в невидимый мир

Англичане занесли оспу на Восточное побережье Северной Америки. В 1616–1617 гг. зарегистрирована крупнейшая эпидемия среди индейцев. В частности, почти полностью погибло племя алгонкинов, населявшее леса Массачусетса.

В Европе даже в XVIII в. от оспы ежегодно погибало 0,5 млн человек. Многие из «благополучно» перенесших оспу слепли, лица их обезображивались оспенными знаками.

В Австралию оспу завезли в конце XVIII в.

В Россию оспа впервые попала в XVI в. В 1610 г. инфекция была занесена в Сибирь и унесла жизни около трети населения. Люди бежали в леса, тундру, горы. На лицах идолов выжигали оспенные знаки для обмана злого духа. Но ничто не могло остановить безжалостного убийцу.

В дореволюционной России процент заболеваемости оспой был высок. По дорогам, городам и селам бродили нищие, ослепшие после оспы. В период 1901–1910 гг. только в европейской части России с населением 70–80 млн человек оспа унесла 414 143 жизнь.

В Средние века во время эпидемий оспы основной «рецепт» был таков: «быстро, далеко, долго», т.е. предписывалось убираться быстро, далеко и долго не возвращаться.

Академик Н.Ф. Гамалея писал: «. Не видя пользы от стремления избежать заразы, человечество перешло к противоположной крайности и стало искать ее». Действительно, попытки защититься от оспы так же древни, как и сама оспа.

С течением времени стало ясно, что люди, переболевшие оспой, больше не заболевали. Кроме того, в некоторых случаях оспа протекает очень легко. У многих народов стало применяться искусственное заражение легкой формой оспы, или вариоляция.

В древней Индии за 1000 лет до н.э. брахманы надевали на детей рубашки, смоченные гноем легкобольных оспой. Китайцы через бамбуковые трубочки вдували в нос измельченные оспенные корочки. Арабы давали пить настой оспенных корочек. В Шотландии перевязывали ниткой, смоченной оспенным гноем, слегка оцарапанную ручку ребенка (шотландский метод). Славяне стегали людей прутьями, смоченными оспенным гноем. На Кавказе прививки делали иголками, смоченными выделениями пустул.

В Оттоманской империи в гарем поставляли только девочек со шрамиком на руке или бедре – результатом прививки против оспы. Эта была гарантия от заболевания и, следовательно, сохранения красоты лица.

В Западной Европе со времен Средневековья бытовал особый способ предохранения от оспы – «покупка оспы». Здорового ребенка приводили к больному, и малыш, протягивая монеты больному, говорил: «Я покупаю у тебя оспу». Домой ребенок возвращался с корочками оспы, плотно зажатыми в кулак. В Аравии также «покупали» оспу, расплачиваясь за нее изюмом или винными ягодами. Уличные глашатаи на улицах объявляли о продаже оспы.

В Средние века в Константинополе сложилась своеобразная школа вариоляции. Известная писательница, леди Монтегю (1689–1762), сама перенесшая оспу, в 1717 г., будучи в качестве жены посла в Константинополе, привила оспу сыну, а через четыре года, уже в Лондоне, – дочери. В 1721 г. по ее рекомендации для проверки безопасности и эффективности вариоляции привили оспу заключенным Ньюгетской тюрьмы. Все окончилось благополучно, как и в описанных выше случаях.

В то же время далеко не все прививки заканчивались хорошо. В большинстве случаев вариоляция приводила к трагедиям, поэтому прививки легкой формы оспы в конце XVIII в. практически прекратились.

Несмотря на то, что Екатерине II и ее сыну Павлу в 1768 г. была удачно привита оспа, вариоляцию в России почти не проводили. Правда, надо отметить, что в воспитательных домах для подкидышей прививки делали постоянно. А.Н. Радищев (1749–1802) во время ссылки в Сибирь занимался вариоляцией.

В 1796 г. в Беркли была открыта новая страница истории борьбы с оспой, связанная с именем английского врача Эдварда Дженнера (1749–1823). Свое открытие Дженнер сделал на основании замечательных народных наблюдений: человек, заразившийся от больной оспой коровы, становится невосприимчивым к натуральной оспе. Коровья оспа поражает вымя животного, поэтому чаще заражаются доярки, у которых на кистях рук образуются оспенные пузырьки.

Дженнер в течение долгих 25 лет проверял народное наблюдение. С большим терпением и исключительной добросовестностью врач изучал каждый случай. Наконец он решился на прививку коровьей оспы пастушонку, восьмилетнему Джеймсу Фиппсу. Оспенный материал он взял у Сарры Нельм, заразившейся коровьей оспой. Прививка прошла хорошо. Но этого было мало. Требовалось доказать, что привитой ребенок не заболеет натуральной оспой. После мучительных раздумий Дженнер идет на решительный шаг и заражает Фиппса натуральной оспой. Мальчик не заболел.

Начало оспопрививанию было положено. Однако прошло немало времени, пока это замечательное открытие получило признание. К сожалению, многие ученые не поняли этого метода. Так, Лондонское Королевское общество возвратило Дженнеру его работу «Исследование причин и действие коровьей оспы», сопроводив наставлением «не компрометировать своей научной репутации подобными статьями». Дженнеру пришлось печатать этот труд за свои деньги. Во многих странах, в том числе и на родине ученого, духовенство с негодованием отвергло прививки коровьей оспы.

Первая вакцинация против оспы в России проходила в торжественной обстановке. В 1801 г. профессор Московского университета Ефрем Мухин привил оспу Антону Петрову из воспитательного дома. Мальчику присвоили фамилию Вакцинов, пожаловали дворянство и пенсию. В период 1805–1810 гг. в России вакцинировали около 1 млн человек. В 1824–1847 гг. вакцинировано было примерно 24 млн младенцев. К сожалению в России прививка была передана в руки невежественных «оспенников» – людей, обязанных за мизерную плату проводить оспопрививание, но зачастую имевших лишь смутное представление о его сущности. Результатов прививок никто не проверял.

Со временем во многих странах убедились, что Дженнер предложил безопасный способ борьбы с натуральной оспой. Однако не все в методе английского врача было безупречно. Для прививки использовали так называемую «гуманизированную лимфу», т.е. содержимое оспенных пузырьков человека, зараженного коровьей оспой. Прививку делали с ручки на ручку – от одного привитого ребенка к другому. В этом-то и была слабая сторона метода Дженнера. Кроме того, при оспопрививании существовала возможность заражения кожными болезнями.

Название «вакцина» (от лат. vacca корова) в науку ввел Луи Пастер (1822–1895), указавший: «Я придаю слову «вакцина» более широкое значение в надежде, что наука оставит его, как выражение признательности к заслугам Дженнера».

Были разработаны новые методы получения вакцины против оспы. Для ее производства отбирали здоровых телят определенной масти и заражали их оспой. Перед заражением на боках и животе телят выбривали шерсть, тщательно мыли и дезинфицировали выбритые участки кожи. Через несколько дней созревали оспенные пузырьки, в которых накапливались вирусы. После сбора и специальной обработки оспенного материала получали готовую вакцину в виде прозрачной вязкой жидкости.

Большая заслуга нашего соотечественника М.А. Морозова состояла в разработке метода получения сухой вакцины против оспы. Преимущества ее очевидны: сухая вакцина более стойкая, имеет более длительный срок годности. Позже была создана новая сухая вакцина, получаемая при заражении вирусом оспы куриных эмбрионов.

В 1979 г. Всемирная организация здравоохранения (ВОЗ) констатировала полное исчезновение вируса натуральной оспы в природе (сохранились лишь образцы в Центре контроля и предотвращения болезней в Атланте (США) и Российском научном центре вирусологии и биотехнологии в Кольцово) и рекомендовала прекратить вакцинацию населения. В 1999 г. все вирусы оспы в лабораториях должны были быть уничтожены, но сохранены фрагменты ДНК. Тем не менее, ВОЗ имеет запас в 500 тыс. доз вакцины против оспы и будет его поддерживать.

Вирусы оспы — наиболее крупные из всех вирусов животных. Под электронным микроскопом они выглядят как большие овальные (кирпичеобразные) частицы размером около 250-350×200-270 нм.

В структуре вирусов оспы различают три основных компонента: двояковогнутую сердцевину, овальные боковые тела и оболочку вириона. Сердцевину вириона составляют ДНК и связанные с нею белки. Сердцевина окружена гладкой мембраной (толщиной около 5 нм), снаружи покрытой слоем вертикально уложенных и плотно прилегающих друг к другу цилиндрических субъединиц (5×10 нм). Вогнутость сердцевины с обеих сторон занята овальными образованиями (неизвестной природы), называемыми боковыми телами. Они как бы сдавливают сердцевину, придавая ей форму двояковогнутого диска, имеющего на разрезе вид гантели.

Геном вирусов оспы представлен одной линейной молекулой двуцепочечной ДНК с ковалентно замкнутыми концами размером 130 тпн (парапоксвирусы) — 280 тпн (авипоксвирусы). На обоих концах генома имеются идентичные, но противоположно ориентированные тандемы повторяющихся нуклеотидных последовательностей. Геномы вирусов оспы способны кодировать около 200 белков, из которых не менее 100 входят в структуру вириона. Однако функциональные особенности определены лишь у небольшого количества вирусных белков. Наиболее важными из них являются ферменты, участвующие в синтезе вирусных нуклеиновых кислот и структурных компонентов вирионов. Например, синтез ДНК-полимеразы, ДНК-лигазы, РНК-полимеразы, энзимов, связанных с кэппированием и полиаденилированием мРНК и тимидинкиназы.

Читайте также:  Оспа на теле ребенка

Инфекционные вирусные частицы содержат системы транскрипции, которые могут выполнять in vitro синтез РНК, а также способны полиаденилировать, кэппировать и метилировать. В вирусных частицах содержится большое количество кодируемых вирусом энзимов и других биологически активных факторов.

Некоторые гены вирусов оспы кодируют белки, которые секретируются инфицированными клетками и вызывают ответ организма на инфекцию, в том числе и формирование иммунитета.

К таким вирокинам относятся гомологичный эпидермальный фактор роста, белок, снижающий активность комплемента, вирокины, обеспечивающие устойчивость к интерферону, и другие супрессоры иммунного ответа, подавляющие действие некоторых цитокинов организма хозяина.

Вирусы оспы обычно характеризуются узким спектром хозяев. Они передаются чаще респираторным путем и реже через поврежденную кожу. Вирусы оспы овец, свиней, птиц и миксоматоза передаются также через укус членистоногими. Вирусы оспы устойчивы в окружающей среде и могут сохраняться годами в высохших струпьях кожи или других вируссодержащих материалах.

Большинство вирусов оспы хорошо размножаются в культуре клеток. Исключение составляют парапоксвирусы, вирус оспы свиней и вирус контагиозного моллюска. Однако они, так же как и ортопоксвирусы, легко образуют оспины на хориоал-лантоисной оболочке куриных эмбрионов.

Вирусы оспы размножаются в цитоплазме, и, в отличие от других ДНК-вирусов, их размножение происходит независимо от ядра клетки, благодаря кодированию всех ферментов, необходимых для транскрипции и репликации вирусного генома. Некоторые из этих функций выполняются вирионами как таковыми. После слияния оболочки вириона с плазматической мембраной клетки или после эндоцитоза вирусная сердцевина освобождается в цитоплазму. Транскрипция вирусного генома характеризуется каскадностью, когда каждый временной класс генов («ранние», «промежуточные» и «поздние» гены) требует наличия специфических транскрипционных факторов, которые создаются предшествующим временным классом генов. Факторы, обеспечивающие транскрипцию промежуточных генов, кодируются ранними генами, тогда как факторы транскрипции поздних генов кодируются промежуточными генами. Транскрипция начинается вирионной транскриптазой и другими факторами, находящимися в сердцевине вириона, которые способны образовывать мРНК спустя минуты после инфицирования.

Белки, образующиеся в результате трансляции этих мРНК, включая ДНК-полимеразу, тимидинкиназу и несколько других ферментов, необходимы для репликации вирусной ДНК. Репликация ДНК ВО связана с синтезом конкатемерных промежуточных структур, которые затем разрезаются с образованием единиц геномной длины. Детали этого процесса недостаточно изучены. С началом репликации ДНК происходит резкий сдвиг в генной экспрессии. Транскрипция «промежуточных» и «поздних» генов контролируется специфическими вирусными белками. Некоторые продукты транскрипции ранних генов образуются на поздней стадии инфекции, упаковываются в вири-оны и используются в следующем круге инфекции. Так как в состав вирусов оспы входит большое количество белков, не является неожиданным, что сборка вирионов есть комплексный процесс, который длится несколько часов и все еще целиком не выяснен.

Образование вириона связано с вхождением ДНК внутрь незрелой сердцевинной структуры, которое затем завершается включением наружных покрывающих слоев. Репликация и сборка вирионов происходят в разных местах цитоплазмы в так называемых виропластах или вирусных фабриках. Вирионы выходят из клетки почкованием (оболочечные вирионы), или путем экзоцитоза, или при лизисе клеток (вирионы без оболочки). Большинство вирионов освобождаются при цитолизе и не имеют оболочки. Вирионы с оболочкой и без нее обладают инфекционностью, но первые, вероятно, играют более значительную роль в возникновении и распространении заболевания, а также в создании иммунитета.

В очищенном вирусе осповакцины (ВОВ) выявлены белки с молекулярной массой 10-250 кД. Многие из них сосредоточены в сердцевине вириона. Два структурных гликопротеина располагаются между оболочкой и сердцевиной. В оболочке ВОВ содержится около 10 белков, из которых иммунологически наиболее активны крупномолекулярные белки с молекулярной массой 58—32 кД (VP4c, VP6a, VP6b и VP7a). Белок 32 кД определяет круг хозяев и важен для репликации вируса.

В составе очищенного вируса оспы птиц обнаружено 29 полипептидов с молекулярной массой 14-138 кД. Наивысшей антигенной и иммуногенной активностью обладают полипептиды с молекулярной массой 35 и 37 кД. За индукцию вируснейтрализующих антител ВО ответственны антигены, расположенные на поверхности наружной оболочки вириона, и прежде всего белок 58 кД (VP4c), являющийся основным структурным компонентом трубочек (ворсинок). Антисыворотка к этому белку нейтрализовала инфекционность вируса и предотвращала образование синцития в культуре клеток. Этот белок ответственен за выработку иммунитета.

Внеклеточные вирионы покрыты дополнительной наружной оболочкой, отсутствующей у внутриклеточных вирионов. Она играет важную роль в индукции синтеза ВН-антител. Инфекционность ВОВ и ВО крупного рогатого скота, имеющих наружную оболочку, нейтрализовалась антисывороткой к имеющему эту оболочку ВОВ, но не нейтрализовалась антисывороткой к ВОВ, лишенному наружной оболочки.

За гемагглютинирующую активность ортопоксвирусов ответственны полипептид 85 кД и гликопротеид 41 кД. Во внеклеточном оболочечном ВОВ гемагглютинирующие свойства связаны с полипептидом 85 кД. Внутриклеточные вирионы (без дополнительной оболочки) практически не содержали этого полипептида. Неструктурный гемагглютинин формируется на цитоплазматических мембранах. С его образованием инфицированные клетки приобретают способность адсорбировать эритроциты. Вирусспецифические белки с молекулярной массой 32 и 37 кД, экспрессируемые на поверхности клеток, инфицированных ВОВ, делают их мишенями для специфических цитотоксических Т-лимфоцитов. МАТ-реактивные против каждого из пяти (54; 34; 32; 29 и 17—25 кД) белков наружного слоя поверхности вируса осповакцины нейтрализовали его инфекционность. В структуре полипептида 54 кД обнаружено два нейтрализующих эпитопа(Аи В). Анализ антигенных детерминант поверхностных полипептидов, проведенный с помощью МАТ, выявил в составе ортопоксвирусов, наряду с видоспецифическими, группоспецифические эпитопы.
Связывание ВОВ с нейтрализующими МАТ не препятствовало его прикреплению к клеткам-мишеням, но блокировало депротеинизацию вирионов.

Бешенство (лисса, или водобоязнь) – острое инфекционное заболевание теплокровных животных и человека, характеризующееся поражением центральной нервной системы. Чаще всего передается человеку при укусе больного животного (собаки, волка, лисицы и др.) или при попадании слюны больного животного на поврежденную кожу или слизистые оболочки. Без лечения бешенство практически всегда приводит к смерти больного.

В 1903 г. Рамленже доказал вирусную природу бешенства. Вирус бешенства относится к семейству рабдовирусов (возбудители бешенства, везикулярного стоматита у крупного рогатого скота и лошадей, а также других заболеваний у животных, от насекомых до млекопитающих, и растений). Вирион имеет пулевидную форму. Его размеры 180–300ґ65 нм. Вирион окружен белково-липидной оболочкой, содержащей единственный гликопротеин, который является видоспецифичным антигеном, и содержит спиральный нуклеокапсид с единственной РНК, а также собственную РНК-полимеразу.

Дата добавления: 2016-04-14 ; просмотров: 567 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Геном вирусов оспы представлен одной линейной молекулой двуцепочечной ДНК с ковалентно замкнутыми концами размером 130 тпн (парапоксвирусы) — 280 тпн (авипоксвирусы). На обоих концах генома имеются идентичные, но противоположно ориентированные тандемы повторяющихся нуклеотидных последовательностей. Геномы вирусов оспы способны кодировать около 200 белков, из которых не менее 100 входят в структуру вириона. Однако функциональные особенности определены лишь у небольшого количества вирусных белков. Наиболее важными из них являются ферменты, участвующие в синтезе вирусных нуклеиновых кислот и структурных компонентов вирионов. Например, синтез ДНК-полимеразы, ДНК-лигазы, РНК-полимеразы, энзимов, связанных с кэппированием и полиаденилированием мРНК и тимидинкиназы.

Инфекционные вирусные частицы содержат системы транскрипции, которые могут выполнять in vitro синтез РНК, а также способны полиаденилировать, кэппировать и метилировать. В вирусных частицах содержится большое количество кодируемых вирусом энзимов и других биологически активных факторов.

Некоторые гены вирусов оспы кодируют белки, которые секретируются инфицированными клетками и вызывают ответ организма на инфекцию, в том числе и формирование иммунитета.

К таким вирокинам относятся гомологичный эпидермальный фактор роста, белок, снижающий активность комплемента, вирокины, обеспечивающие устойчивость к интерферону, и другие супрессоры иммунного ответа, подавляющие действие некоторых цитокинов организма хозяина.

Вирусы оспы обычно характеризуются узким спектром хозяев. Они передаются чаще респираторным путем и реже через поврежденную кожу. Вирусы оспы овец, свиней, птиц и миксоматоза передаются также через укус членистоногими. Вирусы оспы устойчивы в окружающей среде и могут сохраняться годами в высохших струпьях кожи или других вируссодержащих материалах.

Большинство вирусов оспы хорошо размножаются в культуре клеток. Исключение составляют парапоксвирусы, вирус оспы свиней и вирус контагиозного моллюска. Однако они, так же как и ортопоксвирусы, легко образуют оспины на хориоал-лантоисной оболочке куриных эмбрионов.

Вирусы оспы размножаются в цитоплазме, и, в отличие от других ДНК-вирусов, их размножение происходит независимо от ядра клетки, благодаря кодированию всех ферментов, необходимых для транскрипции и репликации вирусного генома. Некоторые из этих функций выполняются вирионами как таковыми. После слияния оболочки вириона с плазматической мембраной клетки или после эндоцитоза вирусная сердцевина освобождается в цитоплазму. Транскрипция вирусного генома характеризуется каскадностью, когда каждый временной класс генов («ранние», «промежуточные» и «поздние» гены) требует наличия специфических транскрипционных факторов, которые создаются предшествующим временным классом генов. Факторы, обеспечивающие транскрипцию промежуточных генов, кодируются ранними генами, тогда как факторы транскрипции поздних генов кодируются промежуточными генами. Транскрипция начинается вирионной транскриптазой и другими факторами, находящимися в сердцевине вириона, которые способны образовывать мРНК спустя минуты после инфицирования.

Белки, образующиеся в результате трансляции этих мРНК, включая ДНК-полимеразу, тимидинкиназу и несколько других ферментов, необходимы для репликации вирусной ДНК. Репликация ДНК ВО связана с синтезом конкатемерных промежуточных структур, которые затем разрезаются с образованием единиц геномной длины. Детали этого процесса недостаточно изучены. С началом репликации ДНК происходит резкий сдвиг в генной экспрессии. Транскрипция «промежуточных» и «поздних» генов контролируется специфическими вирусными белками. Некоторые продукты транскрипции ранних генов образуются на поздней стадии инфекции, упаковываются в вири-оны и используются в следующем круге инфекции. Так как в состав вирусов оспы входит большое количество белков, не является неожиданным, что сборка вирионов есть комплексный процесс, который длится несколько часов и все еще целиком не выяснен.

Образование вириона связано с вхождением ДНК внутрь незрелой сердцевинной структуры, которое затем завершается включением наружных покрывающих слоев. Репликация и сборка вирионов происходят в разных местах цитоплазмы в так называемых виропластах или вирусных фабриках. Вирионы выходят из клетки почкованием (оболочечные вирионы), или путем экзоцитоза, или при лизисе клеток (вирионы без оболочки). Большинство вирионов освобождаются при цитолизе и не имеют оболочки. Вирионы с оболочкой и без нее обладают инфекционностью, но первые, вероятно, играют более значительную роль в возникновении и распространении заболевания, а также в создании иммунитета.

В очищенном вирусе осповакцины (ВОВ) выявлены белки с молекулярной массой 10-250 кД. Многие из них сосредоточены в сердцевине вириона. Два структурных гликопротеина располагаются между оболочкой и сердцевиной. В оболочке ВОВ содержится около 10 белков, из которых иммунологически наиболее активны крупномолекулярные белки с молекулярной массой 58—32 кД (VP4c, VP6a, VP6b и VP7a). Белок 32 кД определяет круг хозяев и важен для репликации вируса.

В составе очищенного вируса оспы птиц обнаружено 29 полипептидов с молекулярной массой 14-138 кД. Наивысшей антигенной и иммуногенной активностью обладают полипептиды с молекулярной массой 35 и 37 кД. За индукцию вируснейтрализующих антител ВО ответственны антигены, расположенные на поверхности наружной оболочки вириона, и прежде всего белок 58 кД (VP4c), являющийся основным структурным компонентом трубочек (ворсинок). Антисыворотка к этому белку нейтрализовала инфекционность вируса и предотвращала образование синцития в культуре клеток. Этот белок ответственен за выработку иммунитета.

Внеклеточные вирионы покрыты дополнительной наружной оболочкой, отсутствующей у внутриклеточных вирионов. Она играет важную роль в индукции синтеза ВН-антител. Инфекционность ВОВ и ВО крупного рогатого скота, имеющих наружную оболочку, нейтрализовалась антисывороткой к имеющему эту оболочку ВОВ, но не нейтрализовалась антисывороткой к ВОВ, лишенному наружной оболочки.

За гемагглютинирующую активность ортопоксвирусов ответственны полипептид 85 кД и гликопротеид 41 кД. Во внеклеточном оболочечном ВОВ гемагглютинирующие свойства связаны с полипептидом 85 кД. Внутриклеточные вирионы (без дополнительной оболочки) практически не содержали этого полипептида. Неструктурный гемагглютинин формируется на цитоплазматических мембранах. С его образованием инфицированные клетки приобретают способность адсорбировать эритроциты. Вирусспецифические белки с молекулярной массой 32 и 37 кД, экспрессируемые на поверхности клеток, инфицированных ВОВ, делают их мишенями для специфических цитотоксических Т-лимфоцитов. МАТ-реактивные против каждого из пяти (54; 34; 32; 29 и 17—25 кД) белков наружного слоя поверхности вируса осповакцины нейтрализовали его инфекционность. В структуре полипептида 54 кД обнаружено два нейтрализующих эпитопа(Аи В). Анализ антигенных детерминант поверхностных полипептидов, проведенный с помощью МАТ, выявил в составе ортопоксвирусов, наряду с видоспецифическими, группоспецифические эпитопы.
Связывание ВОВ с нейтрализующими МАТ не препятствовало его прикреплению к клеткам-мишеням, но блокировало депротеинизацию вирионов.

источник

Весь контент iLive проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.

У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.

Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.

Семейство Poxviridae (англ. рох — оспа + вирусы) включает два подсемейства: Chordopoxvirinae, куда входят вирусы оспы позвоночных, и Entomopoxvirinae, объединяющее вирусы оспы насекомых. Подсемейство вирусов оспы позвоночных, в свою очередь, включает 6 самостоятельных родов и несколько неклассифицированных вирусов. Представители каждого рода имеют общие антигены и способны к генетической рекомбинации. Роды отличаются друг от друга по процентному содержанию и свойствам ДНК, расположению и форме нитеобразных структур на внешней оболочке вириона, устойчивости к эфиру, гемагглютинирующим свойствам и другим признакам.

[1], [2], [3], [4], [5]

Представители рода Orthopoxvirus — вирусы натуральной оспы, оспы обезьян и осповакцины. Вирус натуральной оспы вызывает особо опасную инфекцию человека, которая усилиями мирового сообщества ликвидирована в середине 70-х гг. XX в. Вирус оспы обезьян патогенен не только для приматов: описаны случаи у людей, по течению напоминающие натуральную оспу. Учитывая это обстоятельство, полезно иметь общие представления о микробиологии натуральной оспы.

Наиболее изученным представителем рода Orthopoxvirus является вирус осповакцины, который произошел либо от вируса коровьей оспы, либо от вируса натуральной оспы. Он адаптирован к организму человека и долгое время использовался как первая живая вирусная вакцина.

Вирус натуральной оспы и другие представители этого рода — самые крупные из всех известных вирусов животных. Это один из самых высокоорганизованных вирусов животных, приближающийся по строению некоторых структур к бактериям. Вирион имеет форму кирпича с несколько закругленными углами и размер 250- 450 нм. Он состоит из хорошо различимой сердцевины (нуклеоида, или ядра), содержащей геномную двунитевую линейную молекулу ДНК с молекулярной массой 130-200 МД, ассоциированную с белками. По обе стороны от нуклеоида расположены овальные структуры, называемые белковыми телами. Сердцевина и боковые тела окружены четко различимой поверхностной оболочкой с характерной бороздчатой структурой. Стенка сердцевины состоит из внутренней гладкой мембраны толщиной 5 нм и наружного слоя из регулярно расположенных цилиндрических субъединиц. Вирус имеет химический состав, напоминающий бактериальный: он содержит не только белок и ДНК, но и нейтральные жиры, фосфолипиды, углеводы.

Читайте также:  Как купаться при ветряной оспе

Поксвирусы — единственные из ДНК-содержащих вирусов, размножающиеся в цитоплазме клетки-хозяина. Цикл репродукции вируса складывается из следующих основных этапов. После адсорбции на поверхности чувствительной клетки вирус проникает в цитоплазму путем рецепторопосредованного эндоцитоза, и далее происходит двухэтапное «раздевание» вириона: сначала под действием протеаз клетки разрушается наружная оболочка, происходит частичная транскрипция и синтез сверхранних мРНК, кодирующих синтез белка, ответственного за дальнейшее раздевание. Параллельно с этим идет репликация вДНК. Дочерние копии ДНК транскрибируются, синтезируются поздние мРНК. Затем идет трансляция, и синтезируется около 80 вирусспецифических белков с молекулярной массой от 8 до 240 кД. Часть из них (около 30) является структурными белками, остальные — ферменты и растворимые антигены. Особенностью размножения поксвирусов можно считать модификацию ими клеточных структур, которые превращаются в специализированные «фабрики», где происходит постепенное созревание новых вирусных частиц. Созревшее вирусное потомство покидает клетку либо при ее лизисе, либо путем отпочковывания. Цикл репродукции вирусов оспы занимает около 6-7 ч.

Вирус оспы обладает гемагглютинирующими свойствами; гемагглютинин состоит из трех гликопротеидов. Важнейшими антигенами являются: NP-нуклеопротеидный, общий для всего семейства; термолабильный (Л) и термостабильный (С), а также растворимые антигены.

Поксвирусы выдерживают высушивание (особенно в патологическом материале) в течение многих месяцев при комнатной температуре, устойчивы к эфиру, в 50 % растворе этанола при комнатной температуре инактивируются в течение 1 ч, а в 50 % растворе глицерина при температуре 4 °С сохраняются в течение нескольких лет. Устойчивы к большинству дезинфицирующих веществ: 1 %-ный фенол или и 2 %-ный формальдегид при комнатной температуре инактивируют их только в течение 24 ч, 5 %-ный хлорамин — в течение 2 ч.

К вирусу натуральной оспы восприимчивы человек, а также обезьяны. При экспериментальном заражении в мозг новорожденных мышей развивается генерализованная инфекция, заканчивающаяся летально; для взрослых мышей вирус непатогеген. Он хорошо размножается в куриных эмбрионах при заражении на хорионаллантоисную оболочку, в амнион, в желточный мешок и аллантоисную полость. На хорионаллантоисной оболочке 10-12-дневных куриных эмбрионов вирус натуральной оспы дает мелкие белые бляшки; вирус осповакцины вызывает поражения больших размеров, с черной впадиной в центре, вызванной некрозом. Важным дифференциальным признаком вируса натуральной оспы является предельная температура размножения вируса в курином эмбрионе 38,5 °С.

К вирусу натуральной оспы чувствительны первичные и перевиваемые культуры клеток, полученные от человека, обезьян и других животных. На культуре клеток опухолевого происхождения (HeLa, Vero) вирус натуральной оспы образует мелкие бляшки пролиферативного типа, в то время как при заражении вирусом оспы обезьян клеток Vero выявляются круглые, с литическим центром бляшки. В клетках почки эмбриона свиньи вирус натуральной оспы способен вызывать четкий цитопатический эффект, которого не бывает при заражении этих клеток вирусом оспы обезьян. В клетках HeLa вирус натуральной оспы вызывает круглоклеточную дегенерацию, тогда как вирусы оспы обезьян и верблюдов вызывают дегенерацию с образованием многоядерных клеток.

[6], [7], [8]

источник

Вирус натуральной оспы – таково его полное имя – является представителем большого семейства поксвирусов (от английского слова «рох» – оспа). Поксвирусы – самые крупные из вирусов животных, их размер 250–300 нанометров. Частицы поксвирусов можно увидеть даже в световой микроскоп. Вирус натуральной оспы был открыт именно под световым микроскопом в 1906 году.

Вирионы вируса натуральной оспы выглядят как овальные тельца или как тельца прямоугольной формы, напоминающие кирпич или спичечный коробок со сглаженными ребрами. Сердцевина содержит генетический материал вируса – двунитевую ДНК вкупе с многочисленными белками. На поперечном срезе вириона сердцевина имеет форму гантели, потому что сверху и снизу по центру она сдавлена боковыми телами. Все это хозяйство покрыто оболочкой, на внешней поверхности которой видны бороздки. И, наконец, внеклеточные частицы вируса оспы покрыты еще одной оболочкой, состоящей из липидов; возможно, как часто бывает, эту оболочку вирус заимствует у клетки.

Схема строения вируса натуральной оспы: 1 – сердцевина, содержащая двунитевую ДНК; 2оболочка сердцевины; 3боковые тела;4оболочка вириона

Вирус оспы не зря такой крупный. Под его оболочками упрятано многое, чего более мелкие и более просто устроенные вирусы не могут себе позволить. Например, вирус может сам, без помощи клетки, изготовлять полноценные информационные РНК. Для этого надо много разных ферментов, и все они у вируса есть. Поэтому, проникнув в клетку, вирус не тратит время на раскачку – уже через несколько минут в клетке начинается синтез вирусных белков.

Вирус попадает в организм через слизистую оболочку верхних дыхательных путей. Вначале он накапливается в лимфатических узлах и в печени, а затем кровью разносится по всему организму. В отличие от большинства вирусов, испытывающих неодолимую тягу к тому или иному типу тканей, для размножения вируса натуральной оспы годятся любые клетки, в том числе и клетки кожи, поэтому вирус натуральной оспы вызывает образование сыпи. Вирус оспы поражает глубокие слои кожи, так что после выздоровления на месте сыпи остаются рубцы, «оспины».

Болезнь начинается внезапно – поднимается температура, возникает головная боль, появляются боли в животе, потом температура падает, и возникают поражения на коже, во всех внутренних органах и на всех слизистых в виде характерной оспенной корочки. Смерть наступает через 3–4 дня. Умирает примерно половина заболевших, а еще каждого пятого поражает слепота, потому что оспенная корочка образуется и на роговице глаза. Перенесенное заболевание оставляет после себя стойкий пожизненный иммунитет.

Клиническая картина натуральной оспы настолько характерна, что заболевание определяется просто по внешнему виду больного. Беда в том, что врачей, которые видели настоящего больного оспой, в мире остались единицы, и первые два дня заболевания, когда у больного начинается головная боль и поднимается температура, ни о чем не говорят современному врачу, совершенно не ожидающему встретить оспу. А именно в эти два дня человек усиленно заражает ничего не подозревающих окружающих – заражает воздушнокапельным путем, потому что слюна и выделения из носоглотки содержат громадное количество вируса. Этот способ распространения вирусов вообще считается самым опасным, потому что его труднее всего прервать. Даже при обычном разговоре капельки слюны разлетаются на расстояние до полутора метров. По этой причине инфекционные оспенные бараки всегда устраивались на большом расстоянии от жилых районов или даже на кораблях, стоящих на якоре в открытом море. Зарегистрирован случай заболевания оспой, когда человек просто проезжал на автобусе мимо инфекционного барака, где находились больные оспой.

В первые дни заболевания вирус, проникший в кожу, еще слишко глубоко зарыт и опасности не представляет. Другое дело, когда на коже возникнут и покроются корочкой пузырьки. В таких корочках вирус высыхает и очень долго сохраняет свою заразность. Больной заразен до тех пор, пока у него на теле есть хотя бы одна корочка. Заражение может происходить при контакте с постельным бельем больного, при вдыхании пыли в его комнате. Однажды в Великобритании источником инфекции послужил хлопок, привезенный из–за моря. Вирус сохраняется в трупах. Даже если они закопаны на большую глубину, почвенные животные рано или поздно выносят вирус на поверхность почвы, на траву, и он может попасть к скоту вместе со съеденной травой.

Натуральная оспа известна очень давно – вирус обнаружен микроскопически в язвенных поражениях египетских мумий. А вот живший семь столетий позже Гиппократ (IV век до н.э.) об оспе нигде не упоминает. Спустя еще шесть столетий, во II веке нашей эры, натуральную оспу описывает римский врач Гален, однако его современникам она не представляется грозной болезнью. Но в средние века оспа превратилась в то страшное бедствие – черную смерть, от которой вымирали целые города и одно название которой являлось символом всенародного бедствия.

источник

Семейство Poxviridae включает несколько родов, имеющих разнообразных хозяев. Патогенным для человека является вирус натуральной оспы.

Заболевание оспой известно с незапамятных времен (около 3000 лет до н. э.) и распространено оно было во всех странах мира.

Один из древних историков писал: «Никакой народ, никакая раса, ни звание, ни возраст, ни пол не щадились оспой. Все трепетало перед ней». Оспа страшна своей контагиозностью. В Германии в XVIII веке от оспы погибло 80 тыс. человек. От оспы умерли русский царь Петр II, австрийский император Иосиф, французский король Людовик XIV, английская королева Анна, знаменитая русская актриса Комиссаржевская и др.

Нам сейчас трудно представить себе ту сокрушительную силу, с которой орудовал вирус оспы. Но этот бич человечества был сломлен наукой. Прекратились эпидемии оспы.

И за последние несколько лет не было зарегистрировано ни одного случая оспы во всем мире.

Этиология оспы была установлена к концу XIX века. В 1892 г. Гварниери в гистологических срезах, сделанных и роговицы глаз кролика, зараженного оспенным материалом, обнаружил шаровидные и серповидные включения величиной от 3-4 до 10 мкм, окрашивающиеся по Романовскому — Гимзе в красный цвет. Эти включения были названы тельцами Гварниери. А в 1906 г. в содержимом оспенных пустул Пашен обнаружил оспенные корпускулы, в препаратах, обработанных методом серебрения по Морозову. Эти корпускулы были названы тельцами Пашена — Морозова.

Морфологическая структура. Вирус оспы крупный, размером 300-350 нм, кубоидальной формы. На ультрасрезах оспенных вирионов обнаружена липопротеидная оболочка, под ней вироплазма, в которой содержится нуклеокапсид. ДНК у вируса оспы — двунитчатая. Из нуклеокапсида вириона выделены некоторые ферменты.

Культивирование. Вирус натуральной оспы хорошо развивается в куриных эмбрионах на хорион-аллантоисной оболочке. Репродукция его характеризуется образованием на оболочке белых, плотных точечных бляшек с блестящей поверхностью, величиной около 1 мм.

Вирус можно также культивировать на первичных и перевиваемых клеточных культурах человека и животных. Здесь рост характеризуется цитопатическим действием (дегенерацией клеток через 48-72 ч).

Антигенная структура. У вируса оспы обнаружено несколько антигенов: растворимые (L-термолабильный и S-термостабильный), нуклеопротеидный NP-антиген. Вирусы оспы имеют общие антигены с вирусом оспенной вакцины и эритроцитами человека группы А и АВ.

Устойчивость к факторам окружающей среды. При температуре 100° С вирусы погибают моментально. Температура 60° С губит их через час. Низкие температуры и высушивание вирусы натуральной оспы переносят хорошо — в оспенных корочках сохраняются длительно. Дезинфицирующие растворы (30% хлорамин, лизол) инактивируют вирусы оспы через 30 мин. К фенолу и эфиру они более устойчивы, а в 50% глицерине вирусы оспы сохраняются месяцами.

Восприимчивость животных. К вирусу оспы чувствителен мелкий и крупный рогатый скот. В экспериментальных условиях легко заражаются обезьяны, морские свинки, кролики и др. Однако воспроизвести заболевание, сходное по клинике с болезнью человека, можно только у обезьян.

У новорожденных белых мышей вирус вызывает оспенный энцефалит.

Источники инфекции. Больные люди.

Пути передачи. Воздушно-капельный и воздушно-пылевой (вирус передается при кашле, разговоре, через посуду, а также через пылевые частицы, находящиеся на одежде).

Патогенез. Вирус оспы проникает через слизистую оболочку дыхательных путей и через кожные покровы. Проникнув в организм, вирусы локализуются в регионарных лимфатических узлах. Размножившись там, они попадают в кровь, обусловливая вирусемию. Вторичная репродукция (размножение) происходит в лимфоидной ткани и сопровождается клиническими проявлениями заболевания: высокой температурой, головной болью, потерей сознания и т. д. Обладая дермотропными свойствами, вирусы попадают в эпидермис. На коже и слизистых оболочках образуются папулы, везикулы и пустулы. Оспенные папулы характеризуются прозрачным содержимым и имеют вид жемчужин с перламутровым блеском. На месте появления пустул образуется некроз, после заживления которого остаются рубцы. Образование рубцов на слизистой глаз приводит к слепоте (в 25% случаев). Процент смертности при оспе велик, при геморрагической форме — 100%. При этой форме пустулы наполняются кровью — черная оспа.

Встречаются легкие формы оспы, когда заболевание протекает без температуры и сыпи.

Иммунитет. У переболевших людей иммунитет пожизненный. Обусловливается он вируснейтрализующими, гемагглютинирующимися и комплементсвязывающими антителами. Искусственная иммунизация с последующей ревакцинацией дает стойкий иммунитет. Считают, что интерферон также является фактором защиты.

Профилактика. Ранняя диагностика, изоляция, дезинфекция, предупреждение завоза оспы из других стран, карантин и т. д.

Специфическая профилактика. В борьбе с натуральной оспой большое значение имеет специфическая профилактика. За много лет до нашей эры на востоке существовали разные методы борьбы с оспой. В Индии, Иране — растертые корочки из пустул больных легкой формой втирали в кожу здоровых, а в Китае наносили на слизистые оболочки носа.

В 1796 г. английский врач Э. Дженнер после длительных наблюдений использовал содержимое пустул коровьей оспы для вакцинации людей. Отсюда название — вакцина (от лат. vacca — корова).

Вакциной, приготовленной таким методом, пользовались длительное время. Затем был разработан метод получения ововакцины (вирус накапливали в курином эмбрионе). Этот метод удобнее для изготовления и экономнее.

В настоящее время вакцину готовят из вируса, выращенного в культуре клеток.

В марте 1919 г. В. И. Лениным был подписан декрет об обязательном оспопрививании. После проведения массовой иммунизации оспа в СССР была ликвидирована.

В 1958 г. по инициативе СССР на XI Ассамблее ВОЗ было принято решение о ликвидации оспы во всем мире путем массовой вакцинации. В результате за последние годы не было зарегистрировано ни одного случая заболевания оспой в мире и в 1981 г. по рекомендации ВОЗ обязательная прививка против оспы была отменена.

Цель исследования: выявление возбудителя оспы. Работа с вирусом оспы проводится в строго режимных условиях (см. «Особо опасные инфекции»).

1. Содержимое папул, везикул, пустул.

2. Отделяемое слизистой оболочки носоглотки.

3. Кровь (с 5-го дня болезни) берут для выявления специфических антител.


Способы сбора материала

1. Метод иммунофлюоресценции (экспресс-диагностика) (см. главу 12).

2. Реакция РСК, РТГА и РНГА (см. главу 12).

3. Выделение вируса в куриных эмбрионах и культуре клеток Hela, Нер-2.

4. Обнаружение телец Гварниери в зараженных клетках.

5. Обнаружение телец Пашена в содержимом везикул (окраска по Морозову).

1. Какова величина и структура вириона оспы?

2. Каковы основные методы культивирования вируса оспы?

3. Патогенез натуральной оспы.

4. Иммунитет и специфическая профилактика? Кем и когда был подписан первый декрет об обязательной прививке против оспы?

5. Каковы основные методы диагностики оспы?

источник