Меню Рубрики

Окраска по граму клостридии ботулизма

Газовая гангрена (газовая флегмона) — это чрезвычайно тяжелый инфекционный процесс, развивающийся при инфицировании ран анаэробными патогенными бактериями рода Clostr >

Клостридии обитают в земле, их много в уличной пыли. Предрасположены к заболеванию травмированные люди с обширными участками размозжения мышечной ткани, где резко снижено кровоснабжение и образуется множество «карманов». Бактерии размножаются только в среде, где отсутствует кислород. При попадании в кислородную среду микроорганизмы образуют споры и в таком состоянии сохраняются многие десятилетия. Они обитают в кишечнике человека и травоядных животных, с калом попадают в грунт, и далее с уличной пылью распространяются по объектам внешней среды. При благоприятных условиях клостридии активизируются и начинают интенсивно размножаться. Из множества видов клостридий, в основном, только 7 вызывают газовую гангрену. 70-80% всех заболеваний приходится на Clostridium perfringens. Основной метод лечения заболевания — хирургический. Производятся вскрытие раны лампасными разрезами. При прогрессировании заболевания конечность ампутируется.

Рис. 1. На фото газовая гангрена нижней конечности.

На сегодняшний день описано около 80 видов бактерий рода Clostridium. Причиной газовой гангрены у человека являются лишь патогенные виды клостридий: Clostridium perfringens (70 — 80% всех случаев заболевания), Clostridium novi и Clostridium septicum. Описаны также другие виды патогенных бактерий рода Clostridium, но они встречаются значительно реже. Все микроорганизмы являются облигатными анаэробами — растут и размножаются в условиях отсутствия доступа кислорода.

При неблагоприятных условиях бактерии образуют споры. В таком состоянии они могут пребывать значительное количество времени. Споры устойчивы к солнечному свету, высушиванию и высокой температуре. Рост и развитие клостридий происходит только в анаэробных условиях. Восприимчивы к заболеванию человек и все виды животных.

Клостридии постоянно присутствуют в почве, кишечнике человека и травоядных животных, в ряде случаев при плохой гигиене бактерии можно обнаружить на кожных покровах.

Газовая гангрена развивается при инфицировании клостридиями обширных размозженных ран (огнестрельных, рвано-ушибленных), чаще нижних конечностей и туловища, ранениях толстого кишечника. Бактерии проникают в поврежденные ткани с землей, пылью, через обрывки одежды, осколки снарядов, при оперативных вмешательствах, инъекциях лекарственных препаратов, внебольничных абортах. При шахтных и транспортных травмах ранения чаще возникают в области ягодиц и бедер. Подвержены заболеванию лица, травмированные крупным рогатым скотом, свиньями, овцами и козами. Раны при этом загрязняются навозом животных. В некоторых случаях заболевание развивается при небольших, но загрязненных порезах. Заболевание развивается быстро. Первые его признаки появляются уже с первых суток травмирования.

Рис. 2. 90% всех случаев заболевания газовой гангреной приходится на Clostridium perfringens.

Клостридии — факультативные анаэробы (бактерии растут и размножаются при отсутствии доступа кислорода). Являются сапрофитами. Освобождают природу от мертвого органического материала через процессы брожения и гниения. Они присутствуют в кишечнике животных и человека, где питаются органическими остатками, но не инвазируют (проникают) в живые здоровые ткани.

Клостридии — это бактерии палочковидной формы (бациллы), продуцирующие целый ряд токсинов и ферментов, образующие при неблагоприятных условиях споры. Патогенные формы возбудителей вызывают такие грозные заболевания, как столбняк, ботулизм и газовую гангрену. Они вырабатывают самые сильные из известных ядов — тетаноспазмин (Clostridium tetani), ботулотоксин (Clostridium botulinum) и а-токсин (Clostridium perfringens).

Основными возбудителями газовой гангрены являются Clostridium perfringens (70 — 80% случаев), Clostridium novyi (20 — 43%) и Clostridium septicum (5 — 18%). Значительно реже встречаются такие виды клостридий, как Clostridium histolyticum, Clostridium sordellii, Clostridium difficile, Clostridium fallax и др.

Газовая гангрена практически всегда является смешанной инфекцией. Часто при инфицировании к клостридиям присоединяются аэробные микроорганизмы: стрептококки, стафилококки, кишечная палочка, протей и др.

Возбудители газовой гангрены относятся к семейству Bacillaceae, роду Clostridium. К роду Clostridium относятся многочисленные (около 80) видов клостридий.

Возбудитель газовой гангрены — грамположительная палочка. Бактерии обычно подвижны, имеют капсулу. некоторые виды клостридий лишены капсулы, но имеют жгутики. Самая большая по размеру из всех клостридий является С. novyi. Все остальные бактерии значительно меньших размеров.

Рис. 3. Возбудители газовой гангрены Clostridium perfringens (мазок чистой культуры) под микроскопом.

Клостридии при неблагоприятных условиях образуют споры, расположенные центрально или субтерминально. При центральном расположении спор палочка становится похожей на веретено (closter — веретено).

Споры клостридий устойчивы к высушиванию, высокой температуре и солнечному свету. Они способны выживать в солевых растворах, переносить длительное кипячение, промораживание, ультрафиолетовое облучение, радиацию и вакуум. Споры проявляют устойчивость к целому ряду токсических и дезинфицирующих веществ.

В спорообразном состоянии бактерии могут находиться сотни лет. При благоприятных условиях внешней среды споры прорастают. Процесс прорастания длится 4 — 5 часов.

Рис. 4. Споры Clostridium perfringens.

Рис. 5. На фото спора клостридии. В ее сердцевине находится покоящаяся вегетативная клетка.

Рис. 6. Деление вегетативной клетки после прорастания споры.

Возбудители газовой гангрены ферментируют углеводы с образованием газа и кислоты, образуют сложные экзотоксины — 12 ферментов (токсинов) и энтеротоксин, вызывающий воспаление кишечника. Бактерии делятся на шесть сероваров (А, В, С, D, E, F), каждый из которых имеет свои некротические характеристики. Серовар А является основным возбудителем газовой гангрены. Он формирует до 90% всех случаев заболевания. Основные мишени для токсинов являются мембраны клеток. Ферменты способствуют их расщеплению с последующим за этим отеком и аутолизом (саморастворением).

Бактерии типов А и С выделяют энтеротоксины, являющихся причиной пищевых токсикоинфекций и некротического энтерита.

Газовую гангрену, пищевые токсикоинфекции и некротический энтерит у человека и животных вызывают Clostridium perfringens типов А, С и D. Аналогичные заболевания, но только у животных вызывают Clostridium perfringens типов В, С, D и Е.

Возбудитель впервые был открыт Уэлчем и Нетталом в 1892 году.

Бактерии имеют вид палочек с закругленными концами. Они крупные, имеют размер 3-9 × 0,9-1,2 мкм. Неподвижные. Располагаются поодиночке. Выделенные из чистых культур клостридии имеют капсулу. Окрашиваются по Граму в фиолетовый цвет. Старые культуры утрачивают эту способность. Образуют споры, сохраняющие в окружающей среде многие десятилетия.

Рис. 7. Мазок из чистой культуры Clostridium perfringens (фото слева). Спора бактерии (фото справа).

Рис. 8. На фото бактерии клостридий перфингенс и споры.

Clostridium perfringens являются строгими облигатными анаэробами, хемоорганогетеротрофами. Растут на простых питательных средах — сахарно-кровяном агаре и среде Китта-Тароцци. Рост бактерий сопровождается газообразованием и снижением рН в кислую сторону.

  • На сахарно-кровяном агаре бактерии образуют гладкие, блестящие, округлой формы (S-колонии), либо колонии сероватого цвета, плоские, шероховатые с зазубренными краями (R-колонии). Вокруг колоний образуется зона гемолиза. При контакте с воздухом колонии приобретают зеленоватую окраску. Колонии в толще агара приобретают чечевицеобразную форму.
  • При росте в жидких средах (среда Китта-Тароцци) образуется помутнение с интенсивным газообразованием. В последующем среда просветляется и на дно выпадает беловатого цвета пластиноподобный осадок.
  • При росте на желчном агаре образуются зоны преципитации.
  • При росте на молоке уже через 4 часа отмечается его интенсивное сворачивание, а сгусток из-за газообразования приобретает дырчатую структуру и часто подпрыгивает вверх. Подобная реакция используется в лабораториях для проведения экспресс-диагностики.
  • При росте на мясном бульоне бактерии образуют уксусную и масляную кислоты, а также большое количество таких газов, как H2S, NH3 и CО.

Рис. 9. Колонии Clostridium perfringens на кровяном агаре.

Рис. 10. C. perfringens идентифицируют по характерной «двойной зоне» гемолиза.

Мощная ферментативная активность бактерий послужила присуждению им эпитета perfringens, что обозначает разламывающий, прорывающий. Благодаря интенсивному газообразованию происходит отек поврежденных тканей и разрывы питательных сред. Clostridium perfringens вырабатывают огромное число сахаролитических ферментов, сбраживающих глюкозу, лактозу, мальтозу и сахарозу с последующим образованием кислоты и газа. Они интенсивно створаживают молоко с последующим образованием губчатого крупноячеистого сгустка («штормовая реакция»).

Бактерии разлагают желатин, яичный белок, свернувшуюся сыворотку и коллаген. Не разлагает казеин.

В ходе ацетобутиратного брожения Clostridium perfringens синтезируют масляную кислоту, восстанавливают нитраты в нитриты, образуют лецитиназу.

Рис. 11. Определение лецитиназной активности. Вокруг колоний отчетливо видны зоны мутного ореола, состоящие из преципитированных липидов.

Рис. 12. В левой пробирке культура Clostridium perfringens на сахарном агаре. В результате интенсивного газообразования в гелиевоподобной среде образовались зоны разрывов.

Бактерии Clostridium perfringens по спектру продуцируемых ими токсинов (ферментов) подразделяются на типы A, B, C, и Е. Газовая гангрена и пищевые токсикоинфекции чаще связаны с типом А, некротизирующий энтероколит — с типом С. Понятие «токсин» объединяет около 12 идентифицированных сегодня токсинов (ферментов) и энтеротоксин. Выброс ферментов в области поврежденных тканей приводит к расщеплению сложных веществ и нарушению клеточной проницаемости, в результате чего клетки отекают и расплавляются.

  1. а-токсин (фосфолипаза С). Более интенсивно продуцируется клостридиями типа А. Является основным и самым мощным токсином. Фермент гидролизирует (расщепляет) фосфолипиды клеточных мембран, что приводит к разрушению (лизису) клеток. Оказывает дерматонекротическое и летальное действие, является главным фактором внутритканевой инвазии и внутрисосудистого гемолиза — символа смертельной клостридиальной токсинемии. Обладает лецитиназной активностью.
  2. b-токсин (цитотоксин). В основном, продуцируется клостридиями типов В и С. Оказывает дерматонекротическое и летальное действие, не вызывает гемолиз. Является причиной развития некротического энтерита.
  3. Тета-токсин. Обладает гемолитическим и дерматонекротическим действием. Чувствителен к кислороду. Имеет схожесть с О-стрептолизином стрептококков.
  4. v-токсин (протеиназы). Нарушают реакции белкового синтеза путем расщепления нуклеиновых кислот.
  5. р-токсин (коллагеназа и желатиназа). Продуцируется клостридиями типов А, С и Е, а также некоторыми штаммами бактерий типа D. Ферменты расщепляют желатин и коллагеновые волокна соединительной ткани. Оказывают некротизирующее и летальное действие.
  6. Мю-токсин (гиалуронидаза). Является фактором проникновения клостридий. Ферменты расщепляют кислые мукополисахариды и гиалуроновую кислоту.
  7. Ню-токсин (ДНК-за). Разрушает клеточную ДНК.
  8. q-гемолизин. При участии комплемента разрушает мембраны эритроцитов.
  9. Фибринолизин. Растворяет волокна фибрина.
  10. Гемагглютинин. При его участии происходит реакция агглютинации эритроцитов.
  11. у-токсин (протеиназа). По своему действию напоминает фибринолизин. Не расщепляет нативный (природный) коллаген, но разрушает азоколл (денатурированный коллаген), казеин и желатин.
  12. Дельта -токсин (эластаза). Является протеолитическим ферментом. Расщепляет белки и пептиды.
  13. Сигма-токсин. Продуцируют клостридии типа В и С. Оказывает летальное действие, проявляет гемолитическую активность.
  14. Омега-токсин. Продуцируется, в основном, клостридиями типа С. Оказывает дерматонекротическое и летальное действие.
  15. Эпсилон -токсин. Продуцируется клостридиями типовВ и D, l-токсин — клостридиями типа Е. Проявляют летальное и дерматонекротизирующее действие.
  16. у- и n-токсины. Биохимическая природа этих токсинов остается неизвестной.
  17. р-токсин. Является фактором проницаемости тканей.

Энтеротоксин продуцируют клостридии типов А и С.

    Энтеротоксин Clostr >

Рис. 13. При неблагоприятных условиях некоторые бактерии образуют споры. Они помогают выжить микроорганизму в неблагоприятных условиях много десятилетий. На фото споры бактерий рода Clostridium.

Clostridium novyi являются одним из основных возбудителей газовой гангрены. В годы Великой Отечественной войны причиной газовой гангрены в 42% случаев были бактерии этого вида. Впервые выделили возбудитель и дали ему название Clostridium oedematiens Э. Сэген и М. В. Вейнберг в 1891 году. Позже более полно этот вид клостридий был описан американским бактериологом Ф. Нови, чьим именем в дальнейшем стали называть этот вид бактерий.

Клостридии представляют собой палочки, крупные, иногда слегка изогнутые, размером 4 — 22 х 1,4 — 2 мкм, подвижные, имеют до 25 жгутиков, располагаются часто цепочками. Возбудитель, как и все клостридии, являются облигатными анаэробами. Капсулу не образуют. Окрашиваются по Граму в фиолетовый цвет (грамположительные). Старые культуры утрачивают эту способность. Образуют овальной формы споры, располагающиеся центрально и субтерминально.

Рис. 14. Clostridium novyi. Крупные палочки, располагаются одиночно или цепочками.

Clostridium novyi являются строгими анаэробами. Высокочувствительны к кислороду. Растут на простых средах: углеводных, казеиновых и мясопептонных.

  • При росте на плотных средах через 48 часов образуются полупрозрачные, сочные колонии сероватого цвета. Края неровные. Поверхность зернистая. Клостридии типов А, В и С иногда образуют дочерние колонии. Колонии окружены зоной гемолиза. Клостридии типа D эритроциты не разрушают.

В глубине агара колонии напоминают комочки ваты или снежные хлопья, часто окрашенные в коричневый или желтый цвет.

  • При росте на жидких средах образуется газ и помутнение питательной среды, на дно выпадает осадок. рН сдвигается в кислую сторону за счет образования H2S и органических кислот.

Clostridium novyi идентифицируются по выявлению соматических антигенов. Существует 4 серовара, различные по антигенным характеристикам и синтезируемых токсинов — серовары А, В, С и D.

Серовары типов А, В и С ферментируют фруктозу, глюкозу и мальтозу, серовары типа D ферментируют только глюкозу. Серовары типов А, С и D разлагают глицерин. Все штаммы свертывают молоко и разлагают желатин. Клостридии типа D образуют сероводород и индол, остальные типы бактерий — нет.

Clostridium novyi продуцируют такой фермент патогенности, как фосфолипазу (а-токсин), а также b, у, сигма, е и n — токсины, обладающие некротическим, гемолитическим и летальным действиями. Нарушая проницаемость сосудов, они приводят к развитию желеобразного отека.

Рис. 15. На фото газовая гангрена.

Clostridium septicum впервые были описаны в 1877 году Л. Пастером. Эти бактерии являются условно-патогенными. В обычных условиях они пребывают в кишечнике человека и не вызывают заболевание. В случае дефектов кишечника, например при колоректальном раке, инфекция повреждает кишечник и с кровью (гематогенным путем) распространяется по организму. В отличие от Clostridium perfringens газовая гангрена может возникнуть без предварительных травм и повреждений. Инфекция чаще встречается у людей с травмами и ожогами кожи, после хирургических вмешательств и септических абортах, заболеваниях периферических сосудов, сахарном диабете, раке толстой кишки.

Заболевание развивается быстро. До 80% взрослых погибает в течение первых 2-х суток. Выживаемость повышается у лиц без сопутствующих заболеваниях нижних конечностей.

Clostridium septicum поражают как человека, так и домашних животных: крупный и мелкий рогатый скот.

Clostridium septicum представляет собой бактерию палочковидной формы. с размерами 3 — 4 х 1,1 — 1,6 мкм. В культурах иногда образуются нитевидные формы бактерий, имеющие в длину до 50 мкм в длину. Подвижны (имеют жгутики). Капсулу не образуют. Грамположительны. Со временем клостридии теряют эту особенность. Являются строгими анаэробами.

Clostridium septicum образуют споры. Споры чаще всего располагаются субтерминально, реже — центрально.

Рис. 16. Clostridium septicum под микроскопом.

Clostridium septicum хорошо растут на казеиновых и мясных средах с добавлением глюкозы.

  • На поверхности глюкозокровяного агара бактерии образуют полупрозрачные колонии, блестящие, состоящие из переплетающихся нитей с зоной гемолиза по периферии.
  • При росте на 2% агаре колонии имеет вид дисков.
  • При росте на агаре Цейсслера по истечении 48 часов образуется сплошной нежный налет с зоной гемолиза по периферии.
  • При росте в 1% сахарном агаре колонии образуются в глубине. У них уплотненный центр, от периферии отходят переплетающиеся нити.
  • При росте на мясопептонном бульоне образуется равномерное помутнение. Далее отмечается выпадение рыхлого осадка и газообразование.
  • При росте на среде Китта-Тароцци бактерии растут с интенсивным газообразованием.

Рис. 17. При росте в 1% сахарном агаре колонии образуются в глубине. У них уплотненный центр, от периферии отходят переплетающиеся нити.

Clostridium septicum имеют Н и О антигены. По антигенам Н определяется 6 сероваров: А, В, С, D, E и F.

Clostridium septicum синтезируют ряд ферментов. Они живут на различных органических субстратах, в том числе содержащих сахара и аминокислоты с выделением углекислого газа и молекулярного водорода.

Бактерии ферментируют некоторые углеводы: глюкозу, мальтозу и лактозу с образованием газа и кислоты. Нитраты переводят в нитриты. Расщепляют белки с выделением аммиака и сероводорода. Молоко под действием бактерий свертывается медленно. Не разлагают сахарозу, глицерин и маннит. Не образуют индол.

Clostridium septicum выделяют 4 экзотоксина: а, р, у и s. обладающие некротическим, гемолитическим и летальным действиями.

Рис. 18. Рост Clostridium septicum на питательных средах.

источник

C. botulinum вызывает ботулизм — пищевую интоксикацию, характеризующуюся преимущественным поражением центральной нервной системы. Болезнь возникает в результате употребления пищевых продуктов, содержащих токсины C. botulinum. Редко встречающиеся формы болезни: детский ботулизм и раневой ботулизм. Детский ботулизм связан с заглатыванием спор (например, при употреблении меда, загрязненного спорами C. botulinum, поэтому новорожденным детям мед не рекомендуется). C. botulinum распространен повсеместно, нормальный обитатель кишечника животных и человека, попадает в почву с фекалиями.

Морфологические признаки, С. botulinum – крупные грамположительные палочки, с закругленными концами, образуют субтерминально расположенные споры, диаметр которых превышает поперечник вегетативной формы. Подвижны (перитрихи). Не образуют капсулу. Под микроскопом напоминают теннисную ракетку.

Мазок из чистой культуры C.botulinum. Окраска по Граму

Культуральные признаки. Облигатные анаэробы.

На кровяном агаре с глюкозой образуют очень мелкие сероватые или желтоватые мутные колонии линзообразной формы с зоной гемолиза. На среде Китта-Тароцци вызывают помутнение среды, газообразование, иногда имеется запах прогорклого масла.

Антигенная структура. По структуре экзотоксинов, которые обладают антигенными свойствами, выделяют 8 сероваров A, B, C12, D, E, F, G. У человека чаще вызывают заболевания серовары A, B, E.

Факторы патогенности. Патогенность обусловлена сильным экзотоксином. Ботулинический экзотоксин блокирует передачу нервного импульса в периферических холинэргических синапсах, оказывая нейротоксическое действие (смертельная доза для человека составляет около 0,3 мкг). Экзотоксин состоит из двух субъединиц- A и B. A — токсическая субъединица, B — нетоксическая, защищающая A от инактивации кислотами желудка.

Естественный резервуар и источник возбудителя – почва и различные животные.

Механизм передачи – фекально-оральный, путь – алиментарный.

Споры, попадая в пищевые продукты (грибные, мясные, рыбные или овощные консервы), прорастают, образуют токсин, который при употреблении пищи вызывает отравление (токсин адсорбируется на клетках слизистой оболочки кишечника, проникает в кровь и периферические нервные окончания).

Инкубационный период в среднем составляет 24 час.

Клинические симптомы: тошнота, рвота, боли в животе, головная боль, нарушение глотания, двоение в глазах, параличи глазных, глоточных и гортанных мышц (тяжесть симптомов зависит от количества токсина, попавшего в организм).

Материал: кровь больного, моча, фекалии, остатки пищи.

1. Выявление и идентификация ботулинического токсина в исследуемом материале с помощью, реакции нейтрализации токсина антитоксином на лабораторных животных, реакции непрямой гемагглютинации (РНГА), и реакции иммунофлуоресценции (РИФ).

2. Бактериологический метод для обнаружения возбудителя в исследуемом материале.

Кровь исследуют только на наличие токсина в биопробе.

Испражнения только на наличие возбудителя методом посева, остальной материал – на наличие токсина и возбудителя.

Лечение. Сразу после поступления пациента ему вводят поливалентную антитоксическую сыворотку сероваров А,В,Е. После установления серовара возбудителя лечение проводят моновалентной противоботулинической сывороткой до исчезновения клинических симптомов.

Специфическая профилактика. Ботулинические анатоксины A,B,E, применяемые по показаниям (не нашли широкого применения). Для экстренной пассивной профилактики возможно применение противоботулинических антитоксических сывороток.

источник

Возбудитель — Clostridium botulinum входит в семейство Bacillaceae, род Clostridium.

Материалом для микробиологического исследования являются рвотные массы, промывные воды желудка, кал, кровь, моча, остатки пищевых продуктов. При летальном исходе исследуют содержимое желудка, кишечника, лимфатические узлы, головной и спинной мозг.

Используют методы микробиологической диагностики: бактериологический, биологический (для выявления ботулотоксина в исследуемом материале).

Читайте также:  Меры борьбы с ботулизмом

С целью выявления ботулотоксина можно использовать также РОПГА с антительным диагностикумом (эритроциты, сенсибилизированные антитоксинами соответствующих типов) и определение активности фагоцитов (ботулинический токсин способен подавлять активность фагоцитов, которая восстанавливается в присутствии соответствующей антитоксической сыворотки).

Бактериологический метод. Исследуемый материал растирают в стерильной ступке с физиологическим раствором хлорида натрия.

Посев материала выполняют на специальные питательные среды, например, среду Китта-Тароцци.

Одну пробу засевают в 4 пробирки, две из которых прогревают при температуре 60°С 15 мин. (для селекции C. botulinum типа Е), а остальные — при температуре 80°С 20 мин. Накопление культур клостридий типа Е и F происходит при температуре 28°С, типа А, В, С — при 35°С в течение 48 часов.

Через 24-48 часов выдержки посевов в термостате отмечают характер роста на среде Китта-Тароцци: помутнение, газообразование. Готовят мазки, окрашивают по Граму. В случае выявления типичных клостридий с терминально расположенными спорами овальной формы в виде «теннисной ракетки» делают пересев на кровяной сахарный агар для получения отдельных колоний и выделения чистой культуры.

Для идентификации чистой культуры возбудителя определяют сахаролитические и протеолитические свойства. Антигенные свойства изучают в реакции агглютинации с типовыми сыворотками. Одновременно с изучением ферментативных свойств возбудителя выявляют ботулотоксин в фильтрате бульонной культуры и определяют его тип в реакции нейтрализации.

Биологический метод. Выявление ботулотоксина и определение его типа с помощью реакции нейтрализации имеет важное значение для назначения специфической терапии.

Для проведения реакции нейтрализации используют сухие диагностические антитоксические сыворотки типов А, В, С, Е, F, которые разводят физиологическим раствором до 100-200 МЕ / мл, что обеспечивает нейтрализацию гомологичного токсина в исследуемой пробе.

Реакцию нейтрализации проводят либо со смесью сывороток (предварительная реакция), либо с моновалентными сыворотками для определения типа токсина.

Сахаролитические и протеолитические свойства Clostridium botulinum типов А, В, С, D, Е, F

КГ — образование кислоты и газа

(КГ) — кислота и газ не у всех штаммов

+ — разжижение или пептонизация, положительная реакция

Подготовленный для исследования материал (в виде фильтрата, центрифугата или крови) разливают по 1 мл в 6 пробирок. В первые пять пробирок добавляют по 1 мл противоботулинической сыворотки типов А, В, С, Е, F соответственно, а в последнюю — 1 мл нормальной сыворотки. Пробирки инкубируют в термостате в течение 30 мин. Через 30 мин. шести парам белых мышей вводят по 1 мл смеси из каждой пробирки (кровь — внутрибрюшинно, а другие материалы — подкожно). Заболевание характеризуется появлением учащенного дыхания, расслаблением мышц брюшной стенки («осиная талия»), судорогами, параличом, смертью животного. Мыши, которым был введен центрифугат с противоботулинической сывороткой, остаются живыми.

Если в исследуемом материале есть ботулинический токсин, выживает только одна пара мышей, у которых произошла нейтрализация ботулинического токсина антитоксической сывороткой соответствующего типа.

Определение фагоцитарного показателя. Ботулинический токсин подавляет фагоцитарную активность лейкоцитов. Это свойство используют для выявления его в крови больных и в пищевых продуктах. Исследования проводят следующим образом: кровь больного смешивают в пробирке с 3% раствором цитрата натрия в соотношении 2:1. Опыт выполняют в двух пробирках с использованием поливалентной противоботулинической сыворотки. Если используют типовые сыворотки А, В, С, Е, F, соответственно, количество пробирок для исследования увеличивается. После смешивания взятых ингредиентов, пробирки помещают в термостат на 30 минут для нейтрализации токсина. В пробирки вносят по одному объему 2 млрд. суспензии Staphylococcus aureus и снова помещают в термостат на 20 минут для завершения фагоцитоза. После этого из содержимого каждой пробирки готовят мазок, фиксируют, окрашивают азурэозином и определяют фагоцитарный показатель (фагоцитарный показатель — количество стафилококков, поглощенных в среднем одним лейкоцитом. Для его определения подсчитывают микроорганизмы в 50 лейкоцитах и полученное число делят на 50.

Если в крови больного содержится ботулинический токсин, фагоцитарный показатель крови будет низким, за исключением фагоцитарного показателя той порции, в которой тип токсина соответствует типу добавленной в нее сыворотки, то есть произойдет реакция нейтрализации токсина соответствующими антителами, и фагоцитарный показатель будет значительно выше.

РОПГА с антительным эритроцитарным диагностикумом.

Сущность реакции заключается в том, что эритроциты сенсибилизируются специфическими антителами, и гемагглютинация происходит при наличии в исследуемом материале антигена. Ее высокая чувствительность и специфичность позволяет найти в исследуемом материале микро количество токсинов. Диагностический титр 1:10.

источник

Сульфитредуцирующие клостридии Clostridiumperfringens.-наиболее частый и постоянный обитатель кишечника человека и животных. C. perfringens, обладают редуцирующими свойствами при росте на железосульфитных средах, поэтому их называют сульфитредуцирующими.C. perfringens вырабатывает шесть типов токсинов: А. В, С, D, E, F. Это грамположительная крупная неподвижная палочка, образует спору и капсулу. Микроб полиморфен; факультативный анаэроб, легко культивируется, быстро растет на питательных средах, особенно с добавлением глюкозы. Желатин разжижает медленно, молоко свертывает быстро, ферментирует глюкозу, лактозу, сахарозу, мальтозу, галактозу и другие сахара.

Санитарно-показательное значение:

C. perfringens постоянно обитает в кишечнике человека и животных.

— Поселяется в кишечнике новорожденных в первые дни жизни,

— Микроорганизм можно рассматривать, как показатель фекального загрязнения.

— Из кишечника людей и животных выделяется преимущественно в виде вегетативных форм.

— Во внешней среде сохраняется в виде спор.

— По соотношению обнаруженных в исследуемом объекте вегетативных форм и количества спор судят о давности фекального загрязнения.

Источником заболевания служат в основном продукты животного происхождения – мясные и молочные, обсеменение которых происходит как при жизни животных (больных и бактерионосителей), так и после убоя (при нарушении санитарно-гигиенических норм переработки и хранения сырья). Источниками инфекции могут быть рыба и морепродукты, бобовые, картофельный салат, макароны с сыром, специи.

Метод определения – переводят соединения в среду с FeS, затем заливают голодной средой (очень быстро надо работать, т. к. можно прозевать время, когда их можно определить). Рекомендуется осуществ опред клостридий в почве и воде используемым на предприятии, а также при выборе новых источников водоснабжения.

(пример) Определение спор сульфитредуцирующих бактерий в воде:

Сульфитредуцирующие клостридии, преимущественно C . perfringens — спорообразующие анаэробные палочки, редуцирующие сульфит натрия на железосульфитном агаре при 44 ° в течение 24 ч. Определение сульфитредуцирующих клостридий проводят двумя методами: метод мембранных фильтров и прямым посевом.

Метод мембранных фильтров . Метод основан на фильтровании воды через мембранные фильтры, выращивании посевов в железо-сульфитном агаре в анаэробных условиях и подсчете черных колоний. Результаты анализа выражают числом колониеобразующих единиц (КОЕ) спор сульфитредуцирующих клостридий в 20 мл воды.

Метод прямого посева . Производят посев 20 мл воды в пробирки с железо-сульфитным агаром (2 объема по 10 мл в 2 пробирки или 4 объема по 5 мл в 4 пробирки) инкубируют при 44 ° С 24 ч и посчитывают черные колонии. Результаты выражают числом КОЕ в 20 мл воды.

Нормирование:

— 10 3 — 10 4 — Низкая санитарная культура производства пищевого продукта.

— до 10 5 — Прямое фекальное загрязнение.

— 10 6 -10 7 — Нарушение санитарного состояния производства и угроза здоровью потребителей.

Условно-патогенные и патогенные микроорганизмы — ClostridiumbotulinumВызывает тяжел пищ отравлен – ботулизм. Возбудитель ботулизма имеет палочковидную форму , Грам+, строгий анаэроб. Образует эндоспоры овальной формы, превышающие диаметр бактерии-спорангия, на основании чего внешний вид Cl. botulinum сравнивают с теннисной ракеткой. Вегетативные формы растут на специальных жидких и плотных средах в условиях глубокого анаэробиоза (3–10 мм рт. ст.) при 25–35 0С. Активно ферментируют белки (желатин, свернутый яичный белок, кусочки мяса) и углеводы (глюкозу, фруктозу, мальтозу, декстрин и др.).

Возбудитель ботулизма обитает в кишечнике животных, человека, в почве, воде. Может размножаться в органических субстратах внешней среды, особенно в пищевых продуктах. Ботулинический токсин обладает чрезвычайно высокой ядовитостью для человека (1 г кристаллического токсина содержит 20 тыс. смертельных человеческих доз), хорошо всасывается через кишечную стенку в лимфу и кровь в неизмененной или активированной форме и обуславливает длительную токсинемию.

Cl. botulinum попадает в почву в виде спор при удобрении ее навозом. Поэтому продукты растительного происхождения загрязняются Cl. botulinum через почву. Споры, по сравнению с вегетативной формой Cl. botulinum, устойчивы к воздействию физико-химических факторов окружающей среды. При 100 0 С споры некоторых серотипов Cl. botulinum сохраняют жизнеспособность в течение 6 ч, при 120 0 С – 25 мин. Споры возбудителя ботулизма прорастают при концентрации хлорида натрия до 6–8 %. Оптимальной для их жизнедеятельности является температура 30–37 0 С. Размножение бактерий прекращается при рН

4.4 и Т= 12–10 0 С и ниже. Токсины ботулизма характеризуются высокой устойчивостью к действию протеолитических ферментов, кислот и низких температур, к копчению, но сравнительно быстро инактивируются под влиянием высокой температуры: при 80 0 С – через 30 мин., при 100 0 С – через 15 мин.

Свойства вегетативных форм, спор и токсинов Cl. botulinum должны учитываться в технологии изготовления пищевых продуктов, чтобы не допустить массового отравления населения.

Меры профилактики:

1. Предупреждение загрязнения туш сельскохозяйственных животных частицами земли, навоза, а также в процессе их разделки – содержимым кишечника; посол в условиях холода; соблюдение режимов термической обработки; 2. Использование свежего растительного сырья; предварительная мойка и тепловая обработка; стерилизация продукта с целью предупреждения прорастания спор, размножения вегетативных форм и образования токсинов

Метод определения – накапливание в культуральной среде для наэробных м/о –из вареного мяса, печеночно-глицертновой и др., с последующим вводом накопленного в брюшко белым мышам и наблюдение за мышками.

Нормирование:не допускаются в пищевых продуктах и сырье .

181 Бациллус цереус и энтерококки: характеристика, санитарно-показательное значение, методы определения, нормирование в пищевых продуктах.

Bacilluscereus. Особенно быстро Bacilluscereus размножается в измельченных продуктах (фарш, котлеты, колбаса, кремы). При накоплении этого микроба изменяются органолептические свойства продукта: на поверхности образуется сероватая пленка, изменяются цвет и запах.

Bacilluscereus относится к микроорганизмам, чрезвычайно широко распространенным в природе. Основной средой его обитания является почва, из которой он попадает в пищевые продукты. Микроб может развиваться при концентрации поваренной соли в среде до 10-15%, сахара – до 30–60%. Продукты с рН=4,5 и ниже являются неблагоприятной средой для развития Bacilluscereus. На задержку развития этого микроба, кроме рН среды, влияет и вид кислоты (наибольшим бактериостатическим действием обладает уксусная кислота). Нормирование: Продукты, представляющие потенциальную опасность в связи с возможностью развития и накопления токсинов B. сereus, в настоящее время принято считать доброкачественными, если в них содержится этих бактерий менее 100 КОЕ/г.

Определение: подгот пробу продукта высевают поверхностным методом на 2 чашки Петри с предварительно подсушенной селективной средой (селективный агар, желточный агар), термостатируют, ч/з сутки отбтрают чашки на которых выросло 15-150 колоний, ч/з 2 сут уточняют колво колоний в отобр чашках.Для подтв принадл м/о пересевают на скошенный мясо- пептонный агар. В cerus образ на этой среде налет белого цвета, иногда с мучнистой поверхностью, со скош мясопепт агара готовят препараты, окрашивают по Грамму(они грамм+ палочки) и определяют подвижность при микроскопир методом висяч капли (они подвижны).

Энтерококки. Эти бактерии входят в семейство Lactobacillaceae, род Streptococcus. Так как энтерококки отличиаются от стрептококков рядом свойств и антигенной структурой, их предложили выделить в самостоятельную группу Enterococcus.

Санитарно-показательное значение. Наряду с БГКП энтерококки являются постоянными обитателями кишечника человека и животных, в большом количестве выделяются во внешнюю среду, и обнаружение их в пищевых продуктах свидетельствует о фекальном загрязнении этих объектов. Энтерококки более устойчивы, чем кишечные палочки к физическим и химическим воздействиям, в частности к повышенным концентрациям солей, нагреванию, замораживанию, хлорированию, в связи с чем их рекомендуют использовать в качестве санитарно-показательных микроорганизмов при сан оценке воды открытых водоемов, оценке качества пищевых продуктов с повышенной концентрацией соли, при исследовании минеральных источников, оценке качества хлорирования питьевой воды, а также в качестве индикаторов того, что замороженные пищевые продукты до замораживания были обработаны в негигиеничных условиях. В м/дународном и европейском стандарте по исслед питьевой воды энтерококки – доаолнит показатель фекального загрязнения воды.

Определение: высев подгот пробы в селективн жидк среду(азидно-глюкозный бульон) или на поверхн селективн плотн среды(селективный агар по Сланецу и Бертли), аэробное культивирование посевов=термостатирование при 37 0 С в течен 1-2 сут и подтв принадлежности м/о к энтерококкам.

Для подтв принадл отбир пробирки после термастатир, где помутнение и окрашив среды в желт цвет; чашки Петри где колонии красно-розовы с коричн оттенком колонии диаметр 2мм. Подтв принадл осущ: окраской по Грамму – грамм(+) кокки, расположенные парами, короткими цепочками, не образ спор и капсул,не образуют каталазу.

Нормирование: благополучной счит воду рек и колодцев если в 50 мл ее энтерококк не обнаружен;

при сан оценке солонины и консервированной ветчины – в 1 г не обнаруживается, для конс ветчины – не обнар и в 50 мл рассола.

Этот показатель нельзя применять для оценки качества молочнокислых продуктов и сыров, т.к. энтерококки содержатся в этих продуктах постоянно и способны размножаться.

источник

БОТУЛИЗМ (лат. botulus колбаса; син. аллантиазис) — тяжелая интоксикация, возникающая в результате употребления в пищу продуктов, содержащих токсины Clostridium botulinum, и характеризующаяся преимущественным поражением центральной и вегетативной нервной системы.

Существующая статистика не отражает истинных размеров заболеваемости людей Б. Она более достоверна и полна там, где осуществляется детальное лабораторное обследование всех острых и смертельных случаев заболеваний, и практически отсутствует во многих странах, где случаи смерти не подвергаются экспертизе и не имеется условий для госпитализации больных. Даже в развитых странах только за последние десятилетия эту группу тяжелых интоксикаций стали дифференцировать по типам токсинов, обусловивших их развитие, что является непременным условием для своевременного и правильного лечения больного. Майер (К. Meyer, 1956), анализируя заболеваемость Б. в мире за 50 лет, полагает, что за этот период заболело 5635 чел., из которых 1714 умерли.

Эта статистика основана на отдельных публикациях. В США за 65 лет (1899—1964) зарегистрировано 1574 заболевших, из которых 955 (60,6%) умерли. В России с 1818 по 1913 г. сообщено о 609 больных Б., около половины которых умерли. С улучшением статистического учета заболеваемости в нашей стране с 1920 по 1939 г. было известно о 674 больных Б., из которых более четвертой части умерли. В Японии с 1951 по 1964 г. зарегистрировано 297 больных Б., из которых 78 умерли. Во Франции до оккупации фашистскими войсками зарегистрировано 24 заболевших Б.; за время оккупации количество заболевших превысило 1 тыс. чел., что, как оказалось, было связано с употреблением в пищу мяса свиней, забитых тайно в антисанитарных условиях.

Возбудитель ботулизма Clostridium botulinum (син. Bacillus botulinus) был описан в 1896 г. Ван-Эрменгемом (Е. van Ermengem) во время расследования вспышки Б. в Германии. Изучение этиологии Б. в последующие годы показало, что заболевание вызывается несколькими возбудителями, относящимися к одному виду. Известно шесть типов возбудителей ботулизма: А, В, С, D, E, F. Деление на типы связано с оригинальной антигенной структурой экзотоксина, продуцируемого клеткой. Токсин каждого типа может быть полностью нейтрализован только сывороткой гомологичного типа.

Возбудители Б. широко распространены в природе. Местом постоянного обитания спор этих бактерий является почва, откуда они попадают в воду, на фрукты и овощи, в пищевые продукты, фураж, а затем в кишечник человека и животных (млекопитающих, птиц, рыб, беспозвоночных). Берк (G. Burke, 1919) при исследованиях в Калифорнии выделила 235 культур из воды, сена, садовой почвы, насекомых, пауков, улиток, лошадиного навоза, кишечного содержимого птиц. Во всех перечисленных выше объектах возбудители Б. образуют споры, устойчивые к воздействию хим. и физ. факторов. Вегетативные формы возбудителей Б. погибают при кипячении в течение 2—5 мин., споровые формы некоторых штаммов, особенно типов А, В, С, F, высоко терморезистентны. Они выдерживают 1—5-часовое кипячение и погибают только при автоклавировании. Ботулинический токсин частично разрушается при нагревании до t° 70—90°, при кипячении в течение 5 —15 мин. разрушается полностью.

В нашей стране в окружающей среде чаще всего встречаются типы А, В, Е, реже типы С и F, при заболеваниях у человека обнаружены типы A, В, Е, у животных — типы А, B, С, Е.

Все шесть типов Cl. botulinum очень близки по своим морфологическим, культуральным свойствам и по действию их токсинов на организм человека и животных. Они дают одинаковую клиническую картину болезни.

Возбудители Б. — строгие анаэробы (см.) и обычно размножаются и образуют токсин внутри больших кусков рыбы, ветчины, колбасы, в закрытых консервах либо на питательных средах в специальных аппаратах — анаэростатах. На жидких питательных средах рост бактерий сопровождается помутнением среды и газообразованием, возникает запах прогорклого масла, но эти признаки непостоянны.

Самым характерным свойством всех типов возбудителей Б. является их способность вырабатывать в анаэробных условиях токсины (см.). Сила токсинов на искусственных питательных средах, в различных консервированных пищевых продуктах может составлять для тина А и В от 10 тыс. до 1—3 млн. в 1 мл смертельных доз для белой мыши. Получены сухие и кристаллические ботулинические токсины, которые содержат в 1 мг до 100 млн. смертельных доз для мыши.

Возбудители Б. типа Е, а также непротеолитические штаммы типа В и некоторые штаммы типа F образуют на питательных средах и, возможно, в пищевых продуктах недостаточно активный предшественник токсина — протоксин, который значительно усиливает свою биологическую активность при попадании в жел.-киш. тракт человека и животных в результате воздействия протеолитических ферментов. При добавлении трипсина, панкреатина in vitro также происходит активация протоксина, который переходит в токсин.

По морфологии возбудители Б.— небольшие палочки длиной 4—9 мкм и шириной 0,6—0,9 мкм с закругленными концами (рис. 1). Палочки образуют субтерминальные или терминальные споры и имеют вид теннисной ракетки (рис. 2 и 3). Эти микробы легко окрашиваются различными анилиновыми красками. Молодые клетки окрашиваются по Граму положительно. Через 4—5 сут. роста палочки окрашиваются грамотрицательно. Микробы подвижны, имеют от 4 до 35 жгутиков (рис. 4), капсулы не образуют.

В посевах в высокий столбик агара микробы образуют колонии, имеющие форму чечевицы (рис. 5) и комочков ваты (рис. 6). При посеве на поверхность кровяного, печеночного или сахарного агара вырастают прозрачные колонии величиной в несколько миллиметров с ровными (рис. 7) или изрезанными (рис. 8) краями и блестящей поверхностью. На кровяном агаре колонии окружены зоной гемолиза (рис. 9).

Оптимальной температурой для роста бактерий типов А, В, С, D является 34—35°, для типов Ε и F — температура 26—30°. См. также Clostridium.

Своеобразие эпидемиологии Б. определяется тем, что он не передается от больного человека здоровому. Основным резервуаром инфекции при Б. являются теплокровные животные (преимущественно травоядные), реже рыбы, ракообразные, моллюски, в кишечнике которых накапливаются Cl. botulinum, выделяющиеся с испражнениями в окружающую среду, где переходят в споровое состояние. Последующее прорастание спор на органических субстратах в анаэробных условиях, особенно в диапазоне температуры 22—37°, сопровождается накоплением микробов и их токсинов.

Читайте также:  Может ли развиться ботулизм в консервах с уксусом

Распространенность заболеваний в странах мира определяется: обсемененностью спорами Cl. botulinum объектов окружающей среды, степенью чувствительности человека к токсину данного типа, а также характером производства (приготовления) пищевых продуктов и особенностями питания и быта населения. Отсутствие в объектах окружающей среды спор Cl. botulinum, естественно, исключает возможность их попадания в пищевые продукты, а современная технология производства их даже при наличии спор предотвращает сохранение или накопление ботулинического токсина при хранении продуктов.

Степень чувствительности человека к ботулиническим токсинам типов A, B, C, D, E и F неравнозначна. Это подтверждают эпидемиологические данные, касающиеся распространения заболеваний и обсемененности объектов окружающей среды спорами, а также сведения о различной чувствительности экспериментальных и с.-х. животных к разным типам токсинов.

Споры Cl. botulinum имеют широкое распространение. По В. М. Берману (1941), «источником ботулизма является вся природа», что подчеркивает широкую обсемененность объектов окружающей среды спорами возбудителя. Однако статистика находок спор незначительна. Это объясняется ограниченными и направленными поисками, связанными с возникшими заболеваниями либо с необходимостью обследования отдельных территорий, откуда поставляются овощи или рыбные продукты для пищевой промышленности.

Совершенствование методов лабораторных исследований в направлении выявления особенностей метаболизма возбудителя и широкое использование типоспецифических сывороток позволили более достоверно установить обсемененность окружающей среды различными типами Cl. botulinum и представить современную географию их распространения.

При исследовании различных проб, взятых в районах Северного Кавказа, Азовского и Каспийского морей, Приморского края, Дальнего Востока, Ленинграда, споры возбудителя Б. были обнаружены в 9% проб почвы и 4% проб воды. При этом в пробах почвы обнаружены споры возбудителей типов А, B, С и Е, а в пробах воды и ила тип Е. Среди положительных находок тип Ε составлял ок. 74%; он встречался в почве берегов водоемов практически всех обследованных районов, второе место по частоте находок занимает тип В (16,5%), третье — тип А (7,8%) и четвертое — тип С (1,8%). В 33% исследованных проб почвы берегов оз. Балхаш и некоторых районов Армянской ССР также обнаружены споры возбудителя Б.

По данным зарубежных исследований, наиболее частые находки спор возбудителя Б. имеют место при исследовании бобов (32%), разлагающихся растений (20%) и перебродивших зеленых кормов (20%).

При анализе заболеваемости Б. обращает на себя внимание то обстоятельство, что все заболевания обусловлены тремя типами токсинов — А, В и Ε с преобладанием одного из них в каждой отдельной стране. Так, в США чаще других причиной Б. является тип А, во Франции и Норвегии — тип В, в Японии практически все заболевания связаны с типом Е, в Канаде преобладает тип Е. В нашей стране заболевания обусловливаются тремя типами токсина (А, В и Е). Заболевания, вызванные токсинами типа С, D, F, встречаются крайне редко. Описан один случай группового отравления (оз. Чад), вызванного токсином типа

D. Описаны также единичные случаи отравления токсином типа С. Что касается возбудителя, продуцирующего токсин типа F, недавно обнаруженного в СССР, то заболевания, связанные с ним, зарегистрированы только в Дании и США по одному разу.

Т. о., неравнозначность в патологии ботулинических токсинов различных типов очевидна. Она обусловлена не столько вероятностью попадания в организм человека токсина какого-либо типа, сколько естественной резистентностью человека к одним и высокой чувствительностью к другим типам токсинов, хотя существует мнение (К. И. Матвеев, 1959), что все теплокровные животные, вт. ч. и человек, в равной степени чувствительны к ботулиническим токсинам всех типов. Однако известно, что степень чувствительности теплокровных животных неодинакова. Высокорезистентными к ботулиническим токсинам являются свиньи, собаки, волки, лисы, дикие и домашние кошки, львы, тигры, а также многие птицы. Эти виды являются «санитарами», уничтожающими больных животных и падаль, и характер их питания представляет исключительные возможности контактов с возбудителями Б. и их токсинами. Наиболее чувствительными к ботулиническим токсинам являются лошади, характер питания которых исключает широту таких контактов, и многие лабораторные животные. Это биологическое явление, заключающееся в различной чувствительности теплокровных животных к представителям одной группы токсинов, находит объяснение в эволюционном развитии видов и их взаимоотношении с возбудителями Б. В процессе этой эволюции определенная часть особей вида, обладавших индивидуальной (но генотипически обусловленной) способностью в большей степени противостоять патогенному действию токсинов, выживала, передавая эти особенности следующим поколениям. Надо полагать, что и далекие предки человека, употреблявшие сырое и гниющее мясо, имели также самые широкие контакты с возбудителями Б., и прежде всего с типами С и D как с наиболее древними представителями клостридиозов.

Патологоанатомические изменения, обнаруживаемые при вскрытии трупа больного, погибшего от Б., не представляют собой чего-либо специфического. Как правило, обнаруживается резкая гиперемия всех висцеральных органов, сопровождающаяся множественными мелкими и крупными кровоизлияниями. Оболочки головного мозга сильно гиперемированы, встречаются геморрагии. В ткани мозга обнаруживаются тромбозы, поражения эпителия сосудов некротического и деструктивного характера. Стенки сосудов ткани мозга разрыхлены. Наиболее поражены ганглиозные клетки нервной системы. Наблюдается вакуолизация протоплазмы, распад ядра. Форма клеток изменяется, отростки отпадают, изменения происходят также в нейроглии.

В сердце волокна соединительной ткани набухают, наблюдаются явления некробиоза. Происходит фрагментация миокарда; полосатая исчерченность исчезает. Сосуды резко переполняются кровью, обнаруживается набухание эндотелия в капиллярах и мелких сосудах.

Легкие наполнены кровью, отечны. Наблюдается картина резкой геморрагической пневмонии; в некоторых случаях имеется опеченение отдельных участков легкого, а иногда и целых долей. Капилляры легкого резко расширены, в альвеолах скопление эритроцитов. Печень полна кровью, увеличена, буроватого цвета, дряблой консистенции. При микроскопии отмечается зернистое перерождение клеток печеночной ткани, жировая альтерация, набухание коллагеновых волокон соединительной ткани, диссоциация печеночной паренхимы.

В почках сильно изменен эпителий извитых канальцев, в прямых канальцах дистрофические изменения.

Слизистая оболочка пищеварительного тракта резко гиперемирована. Слизистая оболочка желудка набухшая, желтоватого цвета, разрыхлена, очень легко разрывается, в ней видны точечные и более крупные кровоизлияния. Сосуды кишечника резко инъецированы и придают серозной оболочке мраморный рисунок; слизистая оболочка кишечника набухшая, при микроскопии обнаруживается расширение сосудов, повреждение стенки и выход эритроцитов.

Из скелетных мышц сильнее всего поражается мускулатура грудной клетки, брюшной стенки и конечностей. Мышцы имеют «вареный», с сероватым оттенком вид; при микроскопии обнаруживается расширение сосудов, стаз в капиллярах, исчезает поперечнополосатая исчерченность, волокна набухают, имеют вид как при ценкеровском перерождении.

Основным патогенетическим фактором при Б. является ботулинический токсин. По мнению ряда исследователей, патогенез Б. носит токсический характер. Следует отметить важную особенность, касающуюся генеза интоксикации токсином типа Е. На питательных субстратах этот тип возбудителя Б. образует токсин меньшей силы , чем возбудители типов А, В и F, однако тяжесть интоксикации и летальность при Б. типа Ε превосходит, как правило, таковые при Б. типов А, В и F. Причиной таких различий является существование токсина Ε в двух формах: протоксина и токсина.

Малоактивный протоксин, попадая с. пищевыми продуктами в желудок, активизируется ферментами, превращается в токсин и уже в активном состоянии всасывается в кишечнике. Поэтому освобождение желудка от содержимого как важное лечебное мероприятие при ботулинической интоксикации, обусловленной токсином типа Е, приобретает исключительное значение.

Кроме пищеварительного тракта, токсин может проникнуть и через дыхательные пути при вдыхании пыли, его содержащей. Известны также случаи раневого Б., когда споры Cl. botulinum попадали в рану с почвой, там прорастали, вызывая болезнь, а также случай заболевания, связанный с переливанием трупной крови, взятой у погибшего от Б. (заболевание у погибшего не было распознано).

Cl. botulinum выделяются из организма с фекалиями, токсины — с мочой, желчью и фекалиями.

В эксперименте при ботулинической интоксикации установлены две важные закономерности: первая состоит в том, что одномоментное введение различных типов токсина приводит в итоге к суммации токсического действия; вторая закономерность связана с феноменом парадоксальной чувствительности, когда многократное и частое введение токсина приводит к летальному исходу, хотя общая доза его не превышала половины смертельной дозы. Установлено, что ботулинический токсин типа А избирательно действует на периферические холинергические нервные окончания, в то время как адренергические ткани нечувствительны к нему.

Из крови токсин проникает в органы, где поражает клетки различных тканей, в первую очередь нервной системы, наиболее чувствительной к ботулиническим токсинам. Ботулинический яд действует на мотонейроны спинальных моторных центров и продолговатого мозга, что является причиной развития паралитического синдрома, а также на периферические моторные нервно-мышечные приборы, вызывая нарушение передачи возбуждения с нерва на мышцу. При этом нет полной блокады передачи импульсов. Кроме этого, ботулинический токсин в очень больших дозах угнетает тканевое дыхание головного мозга, но эти изменения не являются причиной смерти. Клинические наблюдения и экспериментальные данные позволяют считать ботулинический токсин и сосудистым ядом, в основе действия к-рого лежит поражение нервной системы сердца и сосудов. Кратковременная перфузия токсина через сосуды вызывает их спазм, длительное воздействие приводит к парезу сосудов и ломкости капилляров.

Молекулярные механизмы взаимодействия токсинов и клетки остаются нерасшифрованными.

Перенесенное заболевание не оставляет иммунитета. Имеются сообщения о повторных заболеваниях. Так, К. М. Аянян (1967) наблюдал Б. у двух детей в 1963 г. и повторно у них же через год. Оба ребенка погибли. Как в первый, так и во второй раз был установлен токсин Cl. botulinum типа А.

Инкубационный период 12—24 часа, но может удлиняться до 10 дней. Чем короче инкубационный период, тем тяжелее течение болезни. Во время вспышки наблюдаются случаи заболевания как с коротким, так и с более длительным инкубационным периодом даже в том случае, если лица ели одновременно один и тот же продукт. Это, видимо, объясняется неравномерным распределением токсина в пищевом продукте, а также индивидуальной чувствительностью заболевших.

В подавляющем большинстве случаев Б. начинается остро. Симптомы чаще могут проявляться в виде трех: основных вариантов: с преобладанием диспептических расстройств, расстройств зрения или дыхательной функции. При первом варианте заболевание начинается с чувства тошноты, быстро присоединяется рвота, к-рая может быть только в начальном периоде болезни. Отдельные больные отмечают схваткообразные, иногда интенсивные боли в эпигастральной области. Часто отмечается чувство переполнения и распирания желудка. Одновременно развивается сухость слизистых покровов ротовой полости, и больные ощущают сильную жажду. Характерны выраженный метеоризм, запоры, которые в результате пареза кишечника могут быть очень стойкими. Однако в начальном периоде болезни нередко наблюдается послабление стула, при этом каловые массы не содержат патологических примесей.

К ранним признакам Б. отнесены и симптомы расстройства глотания, которые в ряде случаев развиваются уже в первые часы болезни. Больные жалуются на наличие «комка» в горле, болезненность при глотании, чувство «царапанья» за грудиной, несколько позже присоединяется поперхивание.

Если болезнь начинается с расстройств зрения, то больные нередко обращаются к окулисту. Первоначально они жалуются на «туман», «сетку», «мушки» перед глазами. Чтение обычного шрифта затруднено или невозможно (парез аккомодации), реже наблюдается двоение предметов.

У отдельных больных развивается «острая дальнозоркость», к-рая может быть корригирована соответствующими линзами. Расстройства зрения в начальном периоде Б. часто протекают без диспептических симптомов, что затрудняет диагноз. При тщательном обследовании больного, помимо разнообразных расстройств зрения, можно установить наличие сухости во рту, жажду, изменение тембра голоса (осиплость, «грубый» голос), а также симптомы общей интоксикации: головную боль, головокружение, общую мышечную слабость, быструю утомляемость, бессонницу. Все эти симптомы в начальном периоде не всегда достаточно четко выражены или могут быть пропущены при осмотре в связи с резким преобладанием глазной симптоматики. Если диспептический вариант начальных проявлений Б. продолжается несколько часов, то расстройства зрения без других характерных проявлений болезни могут сохраняться в течение нескольких дней.

Наиболее тяжелое течение Б. бывает при начальном развитии дыхательных расстройств. Больные среди полного здоровья начинают ощущать нехватку воздуха, делать неожиданные паузы во время разговора. Иногда эти паузы возникают между отдельными слогами. Появляется чувство стеснения или тяжести в груди, в отдельных случаях возникают боли в грудной клетке. Дыхание обычно не учащено, но поверхностное. Одновременно с расстройствами дыхания изменяется голос, который становится не только сиплым, но и приобретает носовой оттенок. К дыхательным расстройствам быстро присоединяется нарушение акта глотания. Всегда выражены симптомы общей интоксикации: головная боль, резкая мышечная слабость, головокружение и др.

Вслед за начальными проявлениями Б. болезнь вступает в фазу наивысшего развития симптоматики. Субъективно больные отмечают «туман», «сетку», «мелькание» или «мушки» перед глазами. Контуры предметов становятся расплывчатыми. При попытке чтения буквы и строчки «разбегаются». Эти симптомы развиваются вследствие влияния на ресничную мышцу токсина, приводящего к ее расслаблению, что ведет к параличу аккомодации. Часто наблюдается двоение предметов, особенно при повороте глазных яблок в стороны. В тяжелых случаях наблюдается паралич одного или нескольких черепных нервов, иннервирующих мышцы глаза, офтальмоплегия (см.).

Почти всегда отмечается выраженное и стойкое расширение зрачков — мидриаз. Этот симптом появляется одним из первых и наиболее длительно сохраняется. Нередко наблюдается неравенство зрачков— анизокории (см.). Реакция зрачков на свет резко снижена или вообще отсутствует. Иногда больные не в состоянии различать очертания предметов и воспринимают только световые раздражения. Часто наблюдается птоз (см.), нередко двусторонний, однако степень опущения верхнего века может преобладать на какой-либо одной стороне. При более тяжелом течении Б. глаза могут быть полностью закрыты, и для того чтобы раскрыть их, больные вынуждены руками приподнимать верхнее веко.

Действие ботулинического токсина распространяется на глазодвигательный и отводящий нервы, происходит нарушение движения глазных яблок, возникает ощущение двоения предметов. Обычно раньше появляется парез латеральной прямой мышцы глаза, что ведет к сходящемуся косоглазию. В редких случаях, когда преобладает парез глазодвигательного нерва, имеет место расходящийся стробизм. При тяжелом течении Б. наблюдается одновременное стойкое поражение всех глазодвигательных мышц, что приводит к полной неподвижности глазных яблок. У ряда больных можно установить наличие нистагма, чаще вертикального.

Расстройства глотания являются характерными симптомами, но встречаются реже, чем глазная симптоматика. Больные вначале жалуются на затруднение и болезненность при глотании. В дальнейшем они ощущают чувство «комка» в горле, и, наконец, нарушается акт глотания. Присоединившееся расстройство движения языка ухудшает акт глотания, изменяет артикуляцию. В тяжелых случаях Б. больной не в состоянии передвинуть кончик языка через край зубов. Развивающийся парез надгортанника ведет к неполному закрытию дыхательных путей при глотании, что создает возможность попадания пищи в дыхательные пути, вызывая поперхивание, приступы кашля и удушья.

У больных с расстройством акта глотания наблюдается отсутствие глоточного рефлекса, можно отметить явления пареза мягкого неба. В тяжелых случаях небная занавеска неподвижна, свисает на корень языка. При попытке проглотить воду она вытекает через нос.

В первые часы болезни отмечается снижение тембра голоса и осиплость, что связано со снижением саливации и сухостью голосовых связок. По мере развития парезов к этим симптомам присоединяются нечеткая артикуляция («комки во рту») и гнусавость, а с развитием пареза голосовых связок может наступить полная афония.

Реже у больных Б. отмечаются вялые парезы лицевой мускулатуры вследствие поражения VII пары черепных нервов. С первых часов у больных развивается резкая миастения, к-рая беспокоит больного на протяжении всего периода интоксикации. Вместе с тем при Б. никогда не бывает поражения чувствительной сферы, а также потери сознания.

При тяжелом течении Б. характерно развитие парезов дыхательной мускулатуры, что выражается в отсутствии диафрагмального дыхания, резком ограничении подвижности межреберных мышц, исчезновении кашлевого рефлекса. Расстройство и остановка дыхания являются одной из основных причин смерти при Б. Дыхательная недостаточность принимает особенно тяжелое течение еще и потому, что наряду с парезами дыхательных мышц у больных, как правило, обнаруживаются воспалительные процессы в легких. В начале болезни больные отмечают «нехватку» воздуха, чувство стеснения и тяжести в груди, быстро устают во время разговора или делают неожиданные паузы, чтобы глубоко вздохнуть. Частота дыхания может достигать 30—40 в 1 мин., в дальнейшем отмечаются патологические виды дыхания.

Сердечно-сосудистая система страдает вторично, на почве интоксикации, при более тяжелом течении болезни (тахикардия, приглушение сердечных тонов, иногда расширение границ относительной тупости сердца, систолический шум у его верхушки, признаки дистрофии миокарда по данным электрокардиографии). Артериальное давление, как систолическое, так и диастолическое, имеет нек-рую тенденцию к повышению, что связывают с сосудосуживающим действием токсина.

При Б. температура тела не повышается, но при тяжелых формах болезни возможна гипертермия как в начальных стадиях, так и в более позднем периоде. Однако повышение температуры тела у больных Б. в позднем периоде болезни чаще обусловлено присоединением пневмонии.

У части больных отмечается олигурия, снижение удельного веса мочи, альбуминурия. В осадке гиалиновые и зернистые цилиндры, эритроциты. Уровень остаточного азота крови может превышать нормальные значения.

В крови чаще отмечается умеренный (иногда и значительный) лейкоцитоз с нейтрофилезом и появлением юных форм нейтрофилов (при тяжелых формах болезни).

При нарушениях глотания — аспирационные пневмонии. У выздоравливающих могут наблюдаться миозиты, сопровождающиеся болями и затруднениями движений, и инфекционный миокардит. Возможно развитие миопии.

Диагноз ставится на основании данных анамнеза, клинических и лабораторных исследований.

Лабораторная диагностика основывается на обнаружении ботулинического токсина или возбудителя Б. в материалах, взятых от больного (кровь, рвотные массы, промывные воды желудка, кал и др.), а также в пищевых продуктах, которые вызвали отравление. Важно установить не только присутствие токсина или микроба, но и определить его тип, чтобы подтвердить клинический диагноз и назначить правильное лечение.

Кровь необходимо брать до введения больному леч. сыворотки. В пробы, взятые для лабораторных исследований, а также в пищевые продукты, нельзя добавлять консервирующие вещества. Материалы должны храниться в холодильнике.

Пробы, поступившие в лабораторию, исследуются одновременно по двум направлениям: две трети предварительно подготовленной пробы (получают фильтрат или центрифугат) предназначаются для обнаружения ботулинических токсинов в реакции нейтрализации, одна треть — для посевов с целью выделения ботулинических микробов.

Для обнаружения токсина для каждой пробы берут 4 мышей весом 16—18 г. В связи с тем что в исследуемом материале может быть один из шести типов ботулинических токсинов, предварительную реакцию необходимо ставить со смесью противоботулинических диагностических сывороток всех типов. Нельзя пользоваться для целей диагностики лечебными противоботулиническими сыворотками. Из каждой исследуемой пробы наливают в две пробирки равное количество (по 1,5—2,4 мл) фильтрата или центрифугата. В одну (первую) пробирку (контроль) добавляют 0,6 мл физиологического раствора, в другую (опыт) — 0,6 мл смеси моновалентных сывороток, после чего содержимое первой пробирки вводят двум белым мышам внутрибрюшинно или в вену в объеме 0,7—1,0 мл, тот же объем второй пробирки (опыт) вводят второй паре белых мышей. Исследуемый материал из каждой пробирки следует вводить разными шприцами.

Читайте также:  Ботулизм какие продукты его вызывают

Наблюдение за животными ведется в течение 4 дней, однако если мыши болеют или погибают раньше этого срока, то тут же ставится реакция нейтрализации с моновалентными диагностическими сыворотками.

При наличии в пробе ботулинического токсина погибают две мыши, к-рым вводился фильтрат без сывороток, остальные две остаются живы. Обычно картина болезни и гибели мышей очень характерна: появляется учащенное дыхание, состояние полного расслабления мышц, западение мышц брюшной стенки («осиная талия» — рис. 10), параличи и судороги перед смертью.

В случае гибели всех 4 мышей следует повторить реакцию нейтрализации с экстрактами, разведенными в 5, 10, 20, 100 раз. При разведении экстрактов посторонняя микрофлора теряет способность убивать мышей, а ботулинический токсин, обладая обычно большей биологической активностью, будет вызывать гибель мышей при разведении фильтратов.

В случае обнаружения в реакции с поливалентной сывороткой ботулинического токсина сразу же ставится развернутая реакция нейтрализации для определения типа токсина с типоспецифическими диагностическими сыворотками.

Особое внимание нужно обратить на постановку реакции нейтрализации с сывороткой крови больного, т. к. ее обычно бывает мало. Следует тщательно отделить сыворотку от сгустка крови и сразу поставить развернутую реакцию нейтрализации с моновалентными ботулиническими сыворотками типов A, B, E (остальные типы Б. встречаются очень редко).

При получении положительной реакции нейтрализации с диагностическими ботулиническими сыворотками дается заключение о наличии в исследуемом материале ботулинического токсина и указывается его тип.

Нередко постановку реакции нейтрализации как с поливалентной, так и с моновалентными сыворотками приходится повторять из-за неспецифической токсичности посторонней микрофлоры, к-рая обычно имеется в рвотных массах, кале, поэтому в лучшем случае ответ о наличии токсина в пробе может быть дан на 2—3-й день, а о его типовой принадлежности — на 3—5-й день от начала исследования.

В случае невозможности обнаружения токсина в исследуемых материалах проводятся исследования по обнаружению возбудителя Б.

С этой целью производится посев 3—5 мл подготовленного материала на жидкие питательные среды. Для первичных посевов лучше использовать казеиново-грибную или казеиново-кислотную среду, бульон Хоттингера или среду типа Тароцци. Необходимо, чтобы pH был в пределах 7,2—7,4. Обязательным является также наличие в мясных средах мясного или печеночного фарша, а в казеиновых — отварного пшена и ваты. Пробирка или флакон должны быть заполнены питательной средой не менее чем наполовину. Перед посевом в среды добавляют 0,5% глюкозы.

Посевы должны производиться в среды в больших пробирках или во флаконах емкостью по 100— 200 мл. Сверху среда заливается слоем вазелинового масла толщиной в 0,5 см. Следует особенно помнить о том, что лучше засевать исходный посевной материал в большой объем среды (70—150 мл), чтобы культуральной жидкости первичного посева хватило на все исследования. Последующие пересевы исследуемых проб из первичного посева в те же жидкие питательные среды могут не дать токсинообразования в среде. Посев следует производить в четыре флакона, два из которых прогревают при t° 80° 20 мин. Два других флакона после посева не прогревают. Все флаконы помещают в термостат при t° 28 и 35° (в каждый термостат один прогретый, один непрогретый).

Если в исследуемом материале возбудители Б. находятся преимущественно в вегетативной форме, то рост в посевах будет гл. обр. в непрогретых флаконах. В том же случае, если в материале имеются споровые формы, рост будет в прогретых флаконах и в отдельных случаях может сразу привести к выделению чистой культуры из такого посева.

Через 48 час. от начала роста из всех флаконов с соблюдением стерильности берут пробы культуральной жидкости (по 10—15 мл) и подвергают их исследованию. С культуральной жидкостью ставится реакция нейтрализации с поливалентной противоботулинической сывороткой. При получении положительных результатов реакцию нейтрализации ставят с каждой типоспецифической сывороткой раздельно. Если через двое суток во флаконах не обнаружен рост, то необходимо продолжать инкубацию в термостате, а исследование провести на 4—6—10-е сут. При обнаружении в исследуемом посеве палочек, типичных по морфологии для Cl. botulinum, а также ботулинического токсина дается заключение о зараженности исследуемого материала возбудителем Б. Выделение чистой культуры в таком случае не является обязательным.

Если в посевах обнаруживаются микробы, по морфологии сходные с Cl. botulinum, а токсин отсутствует, следует провести активацию культуральной жидкости панкреатином или трипсином.

Решающим для ответа о зараженности исследуемого материала возбудителем Б. и его типе являются данные реакции нейтрализации. В сомнительных случаях производят выделение (с высокого столбика агара, с посевов на чашки Петри) чистой культуры. Отдельные колонии, характерные по морфологии для Cl. botulinum, высевают на жидкие среды и исследуют через 3—5 сут. роста в реакции нейтрализации с типоспецифическими противоботулиническими сыворотками.

Реакция нейтрализации является достоверным, высокоспецифичным и достаточно чувствительным методом обнаружения ботулинических токсинов.

Другие предложенные методы лабораторной диагностики Б. (реакция пассивной гемагглютинации, метод подсчета фагоцитарного индекса, люминесцирующие сыворотки) являются сугубо экспериментальными и в широкой практике не применяются из-за недостаточной специфичности.

Б. следует дифференцировать с отравлением беленой. В отличие от Б., первые признаки отравления наступают через 1—5 час. после употребления в пищу растения. Отмечается разбитость, сонливость, головокружение, головная боль. Может быть тошнота, редко рвота. Кожные покровы лица и туловища гиперемированы, иногда обнаруживается скарлатиноподобная сыпь. Сходство с Б. заключается в стойком расширении зрачков и отсутствии реакции их на свет, сухости слизистых оболочек рта, нарушении саливации. Закономерно наблюдаются расстройства психики. Больные обычно очень беспокойны, движения их не координированы, наблюдается неадекватная реакция на окружающие явления, бред, чаще со значительными галлюцинациями. Могут возникать клонико-тонические судороги. Отмечается тахикардия, нарушение ритма, снижение артериального давления, глухость сердечных тонов. При развитии комы наблюдается резкая бледность кожных покровов, брадикардия, одышка, расстройство ритма дыхания. Смерть наступает от остановки дыхания.

Отравление метиловым спиртом также ведет к развитию ряда симптомов, сходных с Б. Отмечается общая слабость, звон в ушах, тошнота, рвота, иногда боли в животе. Зрачки расширены и плохо реагируют на свет. Нарушения зрения носят двухволновый характер. Сначала больные отмечают мелькания перед глазами, снижение остроты зрения, «туман», двоение предметов; затем может наступить нек-рое улучшение зрения, после чего развивается слепота, что не наблюдается при Б. В тяжелых случаях отравления отмечаются галлюцинации, страх, судороги, ослабление мышечной силы, потеря сознания, падение сердечно-сосудистой деятельности, но парезы не наблюдаются.

При дифференциальной диагностике с отравлением ядовитыми грибами нужно учитывать, что Б. обычно возникает при употреблении в пищу консервированных грибов, в то время как отравление ядовитыми грибами происходит чаще при употреблении свежеприготовленных грибов.

При отравлении мухомором, связанном прежде всего с действием мускарина, обладающего атропиноподобным действием, мускаридина и пильцтоксина, отмечается сильное слюнотечение, потоотделение, профузный понос, коликообразные боли в животе, замедление пульса, побледнение лица, стойкое расширение зрачков (последнее напоминает Б.). В более тяжелых случаях отмечаются галлюцинации (чаще зрительные), покраснение кожных покровов лица и судороги.

Раннее наступление дыхательных расстройств у ряда больных полиомиелитом тоже может быть ошибочно расценено как Б. В отличие от Б., при полиомиелите имеет место обильное слизеотделение и саливация.

Для дифференциального диагноза с дифтерией имеют значение изменения в зеве — дифтеритические налеты. Неврологические расстройства при дифтерии обычно возникают после ангины, повышения температуры тела, отечности подкожной клетчатки. Параличи чаще наступают одновременно с развитием миокардита.

Прогноз при Б. всегда тяжелый. Активной и только ранней серотерапией и применением искусственного аппаратного дыхания удается спаcти жизнь даже тем больным, которые ранее являлись обреченными. Выздоровление происходит медленно, обычно в течение месяца и более. Работоспособность восстанавливается еще более длительно; миопия, возникшая в остром периоде заболевания, сохраняется также долго.

Больные подлежат безусловной госпитализации. Необходимо срочно провести промывание желудка и очистить кишечник. Следует учитывать, что промывание желудка при Б. достаточно сложно, т. к. в связи с отсутствием у больного глоточного рефлекса и наличием пареза надгортанника возможно попадание зонда в дыхательные пути. Перед промыванием необходимо точно убедиться, что зонд находится в желудке.

С целью нейтрализации свободно циркулирующего в крови ботулинического токсина необходимо применение противоботулинических сывороток. Наиболее эффективно их введение в первые дни болезни, т. к. наивысшая концентрация токсина в крови наблюдается на 2—3-п сут. болезни (Л. М. Шведов, 1960).

Однако, учитывая возможность длительного поступления токсина в кровь больного, можно считать, что леч. эффект от сывороточной терапии будет выражен и в более поздние сроки болезни. В случаях, когда еще неизвестен тип токсина, вызвавшего заболевание, необходимо введение всех четырех типов сыворотки (А, В, С, Е). После установления типа возбудителя вводят сыворотку соответствующего типа. Нужно учитывать, что возможно отравление несколькими типами токсина. Сыворотку можно вводить как внутривенно, так и внутримышечно. Первоначально вводится сыворотка типа A —10 000 ME, типа B — 5000 ME, типа C — 10000 ME, типа E — 10 000 ME. Однако нередко этого количества бывает недостаточно для полной нейтрализации токсина. Возможны последующие введения сыворотки, дозы к-рой будут зависеть от клинического эффекта. Обычно для лечения тяжелых форм Б. на полный курс лечения расходуется по 50 000—60 000 ME типов А, С, Ε и 25 000— 30 000 ME типа В. Однако и эти дозы могут быть увеличены.

В общий комплекс лечения больных Б. входит неспецифическая дезинтоксикационная терапия, к-рая складывается из введения солевых растворов, глюкозы и кровезаменителей. Особенно благоприятным воздействием обладают низкомолекулярные растворы — гемодез, поливинилпирролидон, а также плазма крови.

Учитывая возможность вегетации возбудителя из спор в жел.-киш. тракте больного, многие клиницисты рекомендуют применение левомицетина или препаратов тетрациклинового ряда. Продолжительность лечения 7—8 дней. С применением антибиотиков сократилась частота «обострений» заболевания.

С целью сокращения сроков восстановления нарушений со стороны нервной системы показано назначение АТФ в виде 1 % раствора по 2 мл три раза в день в течение 7 — 10 дней.

Поражение сердечно-сосудистой системы требует применения камфоры, кордиамина, сердечных гликозидов.

Больной должен получать леч. дозы витаминов, прежде всего из групп С и В.

Особое место в лечении больных занимают вопросы борьбы с расстройствами дыхания. Оправдано применение искусственного аппаратного дыхания. Дыхательная реанимация при Б. складывается из устранения закупорки дыхательных путей и создания адекватной легочной вентиляции с помощью респираторов.

Показаниями для наложения трахеостомы и эндотрахеальной искусственной вентиляции при Б. являются парезы мышц глотки, гортани и языка с жалобами на затрудненное дыхание, парезы дыхательных мышц со снижением жизненной емкости легких до 30%, ослабление кашлевого рефлекса, ателектазы и воспалительные процессы в легких. Рекомендуется применять аппараты, регулирующиеся по объему с независимой частотой дыхания.

Несмотря на уменьшение саливации, больному необходимо периодически проводить отсасывание слизи, скапливающейся в верхних дыхательных путях.

При развитии пневмонии больным необходима соответствующая антибиотическая терапия.

В стадии поздней реконвалесценции для лечения парезов с успехом могут применяться физиотерапевтические процедуры.

По мере совершенствования технологии переработки пищевых продуктов при оптимальных температурных режимах Б. среди людей, связанный с использованием для питания продуктов промышленного производства, практически исчезает. Основное место как причина возникновения заболевания во многих странах мира и в СССР занимают различные пищевые продукты домашнего приготовления (консервированные, маринованные, копченые, вяленые и др.). Однако в США в 1963 г. от коммерческих продуктов заболели Б. 25 чел., 9 из которых умерли. В Японии Б. связан с употреблением национального блюда «изуши», составной частью к-рого является сырая рыба, у эскимосов Аляски— блюда из мяса белого кита, у индейцев на побережье Тихого океана Северной Америки — икры лосося. По данным, представляющим исторический интерес, до 1964 г. в США основным источником Б. являлись плохо стерилизованные или маринованные овощи и фрукты, содержащие недостаточный процент кислоты. Во Франции, Дании, Норвегии, Швеции, Югославии и других странах Европы Б. был связан гл. обр. с ветчиной и рыбой домашнего приготовления.

Знание оптимальных условий прорастания спор, их устойчивости к воздействию температуры, а также условий токсинообразования, позволяет четко определить основные требования к процессам технологической обработки пищевых продуктов, исключающие возможность накопления в них ботулинических токсинов. К таким требованиям относятся: предохранение продуктов от загрязнения спорами возбудителей Б., термическая обработка продуктов, обеспечивающая гибель спор (стерилизация), вегетативных клеток и разрушение токсина, исключение возможности прорастания спор и токсинообразования в готовом продукте.

Необходимость максимального ограждения продуктов от попадания в них спор или обязательное удаление их при очистке и промывании проточной водой (овощи, фрукты, грибы) определяется широким обсеменением объектов внешней среды этим возбудителем. Применительно к мясным и рыбным продуктам освобождение от спор осуществляется аккуратным и быстрым удалением кишечника при послеубойной разделке туш и рыбы, особенно красной, немедленно после улова.

Совершенно обязательным при этом является немедленное охлаждение продуктов после их очистки и промывания, поскольку дальнейшие технологические операции, такие как консервирование, посол, копчение и маринование, не могут разрушить токсин, образовавшийся за время хранения продуктов в тепле, а используемые для консервирования или маринования вещества (поваренная соль, сахар, кислоты) способны лишь задержать дальнейшее токсинообразование.

Правильный температурный режим в процессе обработки продуктов имеет исключительное значение. Обычная тепловая обработка продуктов, предназначенных для непосредственного использования, может быть эффективной только при условии реализации их в первые часы, поскольку, разрушая токсин при обычных условиях нагрева до 100°, она не нарушает жизнеспособности спор. При постепенном охлаждении и продолжительном хранении при комнатной температуре в таких продуктах может накапливаться токсин за счет проросших в вегетативные клетки спор. Совершенно очевидно, что повторная тепловая обработка таких продуктов перед употреблением является обязательной.

Стерилизация продуктов должна проводиться только в автоклавах, где соответствующее повышенное давление позволяет создавать температуру 120°, оказывающую губительное действие не только на вегетативные клетки и их токсины, но и на споры. Такие продукты, выпускаемые промышленностью, безвредны даже в случае длительного хранения при комнатной температуре. Это положение не может распространяться на консервы домашнего приготовления, т. к. температурное воздействие при этом не превышает 100°, а герметизация банок создает оптимальные анаэробные условия для прорастания оставшихся спор, вегетации и токсинообразования в пищевом субстрате. Поэтому в домашних условиях при отсутствии автоклава нельзя консервировать в герметических банках мясные и рыбные продукты, являющиеся хорошей питательной средой. Это положение полностью распространяется на консервирование грибов и овощей, которые невозможно абсолютно освободить от спор возбудителя Б. Такие продукты допустимо заготавливать впрок только путем маринования или соления с добавлением достаточного количества кислоты и соли и обязательно в открытой для доступа воздуха таре.

Внешним проявлением зараженности консервов спорами возбудителей Б. и развития их в субстрате консервов является газообразование, приводящее к бомбажу тары (вздутие крышек). При этом консервы размягчаются, структура их изменяется, появляется неприятный запах. Однако описаны случаи, когда ботулинический токсин обнаруживался во внешне не измененных консервах.

В целях предупреждения заболеваний Б. технологические процессы на пищевых предприятиях, где производятся консервированные продукты, строго регламентированы соответствующими инструкциями, отклонения от которых недопустимы.

Применительно к виду сырья или продуктов существуют жесткие требования, возможности исполнения которых определяют готовность данного предприятия к выпуску доброкачественной продукции. Такие требования существуют к производству молочных продуктов, к обработке овощей, фруктов и сырья из зелени, к переработке грибов, к подготовке различных маринадов, пряностей, специй и других веществ, используемых для консервирования. Жесткие требования предъявляются также к консервным банкам, подготовке их к заполнению и контролю их герметичности. Гарантией выпуска предприятием доброкачественной продукции являются: хорошее сан. состояние оборудования завода, использование для технологических целей свободной от анаэробных микроорганизмов питьевой воды, тщательная мойка сырья и обработка вспомогательных материалов, соблюдение режимов переработки, исключающих развитие в продуктах возбудителя Б., установление регламентированной кислотности продуктов, использование только герметичной тары при постоянном контроле работы закаточных машин, использование режимов стерилизации, гарантирующих полное обезвреживание консервов (разрушение токсина, гибель вегетативных клеток и спор).

Исключительно эффективным средством специфической профилактики Б. у человека является вакцинация ботулиническим полианатоксином. Учитывая экзотичность заболеваемости Б. в СССР это средство не имеет широкого применения и используется лишь в случаях защиты персонала лабораторий, проводящих исследования с возбудителем Б.

Для экспертной диагностики отравления ботулиническим токсином необходимо иметь следственные данные об условиях возникновения отравления (характер продуктов, употреблявшихся в пищу, количество пострадавших, замеченные симптомы, медицинские документы об оказании помощи). Судебно-медицинский эксперт должен иметь в виду характерные особенности клиники отравления. При исследовании трупа специфических для Б. изменений не устанавливается; обычно наблюдается картина быстро наступившей смерти. Обязательно гистологическое исследование, при к-ром выявляется картина расстройства кровообращения, паретическое состояние капилляров и периваскулярные кровоизлияния в ц. н. с., дегенеративные изменения нервных клеток (гл. обр. в ядрах глазодвигательных нервов, в продолговатом мозге и четверохолмии). Может наблюдаться также паретическое состояние мелких сосудов в стенке тонкой и толстой кишки, в легких, миокарде. Кроме того, на суд.-хим. исследование направляют органы (по общим правилам), а на бактериологическое — кровь, пищевые массы, промывные воды, мочу, оставшиеся пищевые продукты.

Окончательный вывод об отравлении ботулиническим токсином суд.-мед. эксперт составляет по совокупности всех полученных данных.

Библиография: Бургасов П. Н. и Румянцев G. Н. Эволюция ботулизма, Журн, микр., эпид, и иммун., № 9, с. 18, № 11, с. 79, 1967, № 1, с. 73, № 2, с. 83, № 4, с. 3, 1968; Кравченко А. Т. иШишулина JI. М. Распространение возбудителей ботулизма и столбняка на территории СССР, М., 1970, библиогр.; Матвеев К. И. Ботулизм, М., 1959, библиогр.; Мельников В. Н. и Мельников Н. И. Анаэробные инфекции, с. 171, М., 1973; В о г о f f D. А. a. D a s Gupta В. R. Botulinum toxin, в кн.: Microbialtoxins, ed. by S. Kadis a. o., v. 11-A, p. 1, N. Y.—L., 1971, bibliogr.; Botulism, ed. by Κ. H. Lewis a. K. Cassel, Cincinnati, 1964; Botulism, ed. by M. Ingram a. T. A. Roberts, L., 1967; Burke G. S. Occurence of bacillus botulinus in nature, J. Bact., v. 4, p. 541, 1919; Dolman С. E. Human botulism in Canada, Canad. med. Ass. J., v. 68, p. 538, 1953; Meyer K. F. The status of botulism as a world health, Bull. Wld Hlth Org., v. 15, p. 281, 1956.

П. H. Бургасов, В. И. Покровский,С.Г.Пак; Т. И. Булатова (этиол., лабораторная диагностика), В. К. Дербоглав (суд. мед.).

источник