Меню Рубрики

Пигментный обмен при вирусных гепатитах

Примерно 80% неконъюгированного (непрямого) билирубина происходит из обветшалого гемоглобина, причем из 1 г гемоглобина образуется около 35 мг билирубина. Разрушение состарившихся эритроцитов осуществляется в селезенке, костном мозге и печени. Главная роль в разрушении эритроцитов принадлежит макрофагам; 20% неконъюгированного билирубина синтезируется из тема иного происхождения (эритробласты, ретикулоциты, миоглобин, цитохром и др.). Его относят к так называемому шунтовому билирубину.

Всего за сутки синтезируется около 300 мг билирубина. Неконъ-югированный (свободный или непрямой) билирубин практически нерастворим в воде, но растворим в жирах. У взрослого здорового человека пигмент связан целиком с альбумином (транспортным белком-лигандином). В таком виде он не может преодолевать почечный и гематоэнцефалический барьер. Один моль альбумина связывает два моля билирубина. При значительной гипербилирубине-мии (более 171,0—256,5 мкмоль/л, или 10—15 мг/дл) мощностей альбумина не хватает, и часть неконъюгированного билирубина оказывается несвязанной. То же происходит при гипоальбуминемии, при блокаде альбумина жирными кислотами и лекарствами (сали-цилаты, сульфаниламиды и др.). При наличии не связанного с альбумином неконъюгированного билирубина возрастает угроза повреждения головного мозга.

В последние годы большая роль в связывании и транспортировке неконъюгированного билирубина отводится также глутатионтранс-феразе.

Неконъюгированный (свободный, непрямой) билирубин, поступающий с кровью в синусоиды с помощью рецепторов, захватывается гепатоцитами. Следует заметить, что неконъюгированный билирубин под влиянием света претерпевает изменения — образуются фотоизомеры и циклобилирубины, которые могут выделяться с желчью.

Внутриклеточный транспорт неконъюгированного билирубина в основном идет по непрямой дороге, т. е. используется как цитоплазма, так и ГЭРЛ. Перемещение происходит с использованием лигандинов — транспортных белков X и Y, а также глутатиотранс-феразы. Продвигаясь по системе ГЭРЛ, неконъюгированный билирубин попадает в гладкий эндоплазматический ретикулум. Именно здесь с помощью билирубингликозилтрансферазы происходит конъюгация (соединение) глюкуроновой кислоты и билирубина и образуется конъюгированный (прямой, связанный) билирубин.

Конъюгированный билирубин соединен либо с одной, либо с двумя молекулами глюкуроновой кислоты. В первом случае это билирубинмоноглюкуронид (около 15% от общего билирубина), во втором — билирубиндиглюкуронид (около 85% от общего билирубина). Билирубинмоноглюкуронид может частично образовываться и вне печени. Известно, что диглюкуронид имеет только печеночное происхождение. Конъюгированный билирубин водорастворим, но нерастворим в жирах, может проникать через почечный барьер. Этот вид пигмента относительно мало токсичен для головного мозга. Однако его высокие стабильные концентрации повышают чувствительность почек к эндотоксинам. Хуже, чем неконъюгированный билирубин, он связываемся с сывороточным альбумином.

Образовавшийся в гладком эндоплазматическом ретикулуме конъюгированный билирубин активно транспортируется к билиарной мембране гепатоцита и после определенных энергетических затрат (в основном за счет преобразования АТФ) экскретируется в желчный капилляр. Этот процесс является компонентом секреции желчи. Небольшая часть конъюгированного билирубина выводится в плазму. Механизм этого выведения (по сути — рефлюкса) изучен недостаточно.

Система конъюгации билирубина в печени обычно использует примерно 2% мощности гепатоцита, экскреции — 10%.

Билирубинглюкуронид с желчью поступает в кишечник. Кишечные микробы, особенно в толстой кишке, осуществляют отщепление

глюкуроновой кислоты и образование мезобилирубина и мезобили-

Далее происходит восстановление мезобилирубина и мезобилиногена (уробилиногена). Часть мезобилиногена всасывается в кишечнике и по воротной вене поступает в печень, где полностью расщепляется до дипирролов. При повреждении паренхимы печени процесс расщепления мезобилиногена нарушается, и этот пигмент поступает в общий ток крови, а затем через почки — в мочу.

Большая часть мезобилиногена из тонкой кишки продвигается в толстую, где при участии анаэробной микрофлоры восстанавливается до стеркобилиногена. Основная часть последнего в нижних отделах кишки окисляется и превращается в стеркобилин. За сутки с калом выделяется 10—250 мг стеркобилина. Лишь небольшая часть стеркобилиногена через систему геморроидальных вен поступает в нижнюю полую вену и через почки выводится с мочой.

Под уробилинурией подразумевают выделение с мочой уробилино-идов. Уробилиноиды включают уробилиновые (уробилиногены, уробилины) и стеркобилиновые (стеркобилиноген, стеркобилин) тела. Разграничение их не получило в клинической практике широкого распространения. Уробилиногенурия и уробилинурия, с одной стороны, и стеркобилиногенурия и стеркобилинурия — с другой, обусловлены по существу одними и теми же химическими веществами, которые встречаются в двух формах — восстановленной и окисленной.

Гипербилирубинемия может развиваться преимущественно за счет неконъюгированного билирубина, как, например, при болезни Жильбера (семейная негемолитическая гипербилирубинемия, или пигментный гепатоз), гемолитической анемии, некоторых формах хронического гепатита. Другая большая группа гипербилирубинемий связана с преимущественным повышением концентрации конъюги-роваиного билирубина и встречается при острых гепатитах (вирусных, алкогольных, лекарственных),, при обострениях циррозов печени и хронических гепатитов, а также при подпеченочных желтухах, обусловленных камнем или опухолью крупных желчных протоков. Определение содержания конъюгированного и неконъюгированного билирубина важно для диагностики заболеваний печени, а также контроля за их течением.

источник

Под пигментным обменом подразумевают обычно обмен важнейших пигментов крови — гемоглобина и продуктов его распада- билирубина и уробилина. В настоящее время является доказанным и общепризнанным, что разрушение эритроцитов происходит в клетках ретикуло-эндотелия (печень, костный мозг, селезенка, сосуды). Купферовские клетки печени при этом играют главную и активную роль (A. Л. Мясников, 1956). При разрушении гемоглобина от него отщепляется простетическая группа, которая теряет атом железа и далее превращается в желчные пигменты — билирубин и биливердин. В просвет желчных капилляров билирубин выводится эпителиальными клетками. Существующий кишечно-печеночный кругооборот желчных пигментов, хорошо описанный A. Л. Мясниковым, можно схематически изобразить так: печень — желчь — кишечник — портальная кровь — печень — желчь. Для исследования пигментного обмена обычно пользуются определением билирубина в сыворотке крови, уробилина в моче и стеркобилина в кале.

Билирубин сыворотки крови подвержен колебаниям как при физиологических, так и при патологических состояниях. В норме уровень билирубина крови зависит от объема физиологического гемолиза. Содержание его увеличивается при физической работе (повышенный гемолиз), при голодании. После приема пищи билирубин крови у здоровых лиц понижается вследствие его выделения с желчью (Б. Б. Коган, 3. В. Нечайкина, 1937). При поражении печени, желчных путей, повышенном гемолизе билирубин в крови повышается. Нормальные цифры билирубина крови, по данным различных авторов, варьируют в довольно значительных пределах. Так, по ван ден Бергу, они колеблются в пределах от 0,1 до 0,6 мг%, по Бокальчуку и Герцфельду — от 1,6 до 6,25 мг% и т. д. Наряду с количественным определением билирубина большое значение имеет изучение качества его. Ван ден Берг в 1910 г. сообщил, что билирубин по своему качеству неоднороден и состоит из двух фракций, отличающихся друг от друга по поведению с диазореактивами. Один билирубин он назвал «прямым», или «быстрым», а другой — «непрямым». Раньше считали, что «непрямой» билирубин превращается в «прямой» в клетках печеночного эпителия путем отщепления от «непрямого» билирубина белковых субстанций. За последнее время работами ряда авторов (Schmid, 1956; Billing a. Lathe, 1958) установлено, что «прямой» билирубин образуется из «непрямого» в результате соединения последнего с глюкуроновой кислотой. Образовавшийся в ретикулоэндотелиальной системе из протопорфирина непрямой, или так называемый свободный, билирубин (гемобилирубин) выделяется в кровь, так что у здорового человека в крови находится 0,5-0,75 мг% «непрямого» билирубина (И. Тодоров, 1960). Этот билирубин, благодаря наличию в его молекуле глобина, является соединением, нерастворимым в воде и дающим непрямую реакцию с диазореактивом. В крови гемобилирубин соединяется с альбумином, образуя коллоидный раствор, не проходящий через почечный фильтр. С током крови «непрямой» билирубин попадает в печень, где от него отщепляется альбумин и присоединяется глюкуроновая кислота, т. е. образуется глюкуронид билирубина, который является прямым билирубином или холебилирубином. Этот процесс осуществляется в паренхиме печени при участии фермента трансферазы (Schmid, 1961). Билирубинглюкуронид хорошо растворяется в воде, легко проходит почечный фильтр, свободно попадает в желчь и дает быструю реакцию с диазореактивами. Благодаря соединению с глюкуроновой кислотой жирорастворимый, ядовитый для мозговой ткани «непрямой» билирубин становится растворимым и утрачивает токсичность. При физиологических состояниях в крови и моче прямого билирубина нет, так как между кровеносными и желчными капиллярами существует барьер из печеночных клеток, который не позволяет ему перейти в кровь. При паренхиматозных и застойных желтухах этот барьер разрушается и прямой билирубин из крови переходит в мочу. Методом хроматографического исследования установлено, что прямой билирубин может присоединять к себе одну или две молекулы глюкуроновой кислоты, т. е. образовывать моно- или диглюкуронид билирубина. По данным Hoffman (1961), билирубин — диглюкуронид желчи составляет 75-80%.

В настоящее время точно еще не установлено, в каких именно клетках печени осуществляется конъюгация билирубина. По мнению 3. Д. Шварцмана (1961), образование моноглюкуронида возможно в ретикуло-эндотелиальных клетках, а диглюкуронида — в печеночных. Билирубин-глюкуронид, достигнув в составе желчи толстого кишечника, распадается на ряд переходящих друг в друга билирубиноидов, образуя в конечном итоге стеркобилин и уробилиноген. Последний всасывается кишечным эпителием в кровь и через портальную систему возвращается в печень, где почти полностью улавливается у здоровых людей купферовскими клетками. Небольшая часть уробилина попадает в большой круг кровообращения и выводится из организма с мочой. Таким образом, уробилин, хотя и является пигментом мочи, но в норме находится в ней в незначительных количествах (чаще в виде следов). По Тервену, в суточном количестве мочи у здоровых лиц содержится около 1 мг уробилина. Попадая вместе с желчью в пищеварительный тракт, желчные пигменты подвергаются здесь воздействию бактерий. При этом билирубин восстанавливается в стеркобилиноген и в таком виде выводится с калом. Под влиянием света и воздуха стеркобилиноген легко окисляется, превращаясь в стеркобилин, суточное количество которого, по Тервену, колеблется от 50 до 200 мг. Если уробилинурия отражает функциональное состояние печени, то, по мнению многих авторов, повышенное количество стеркобилина в кале свидетельствует об интенсивности гемолиза. Поэтому ряд исследователей придает большое значение отношению количества уробилина мочи к стеркобилину (коэффициент Адлера), равному в норме 1:30, 1:40.

Согласно имеющимся в литературе сообщениям, а также данным, полученным нами, пигментный обмен страдает при многих инфекционных заболеваниях, что приводит к увеличению содержания уробилина в моче и более или менее значительной гипербилирубинемии (А. М. Ярцева, 1949; А. В. Змызгова, 1957; И.К.Мусабаев, 1950; Б. Я. Падалка, 1962, и др.). Однако выраженная желтуха при этом встречается редко. Имеются только единичные указания о наличии желтухи у больных брюшным тифом (Н. И. Рагоза с соавторами, 1935), сыпным тифом (А. М. Сигал), инфекционным мононуклеозом (К. М. Лобан, 1962) и другими заболеваниями. Острые малярийные гепатиты также могут сопровождаться желтухой и осложняться острой дистрофией печени (Е. М. Тареев, 1946).

Нарушение пигментного обмена при инфекционных заболеваниях в одних случаях связывают с поражением печени и эндокринно-нервного аппарата, регулирующего ее функции, в других — с повышенным гемолизом.

Определение общего, «прямого» и «непрямого» билирубина в сыворотке имеет большое клиническое значение при дифференциальных диагнозах различных видов желтухи.

В свете новых данных о механизме образования и выделения билирубина в настоящее время по-другому трактуется и патогенез желтух. Оказалось, что прежнее деление желтух на паренхиматозные, механические и гемолитические не отражает всего многообразия патогенетических вариантов этого заболевания. По современной классификации (А. Ф. Блюгер и М. П. Синельникова, 1962) желтухи делятся на две группы:

    желтухи, не связанные с нарушением тока желчи
    надпеченочные желтухи [показать]

    Надпеченочные желтухи сопровождаются накоплением в сыворотке крови свободного «непрямого» билирубина, в то время как количество «прямого» билирубина остается нормальным. К ним относят врожденную и приобретенную гемолитические желтухи. Увеличение непрямого билирубина в крови происходит вследствие усиленного распада эритроцитов с последующей гиперпродукцией билирубина. Возникает такое большое количество желчного пигмента, что нормальная выделительная способность печени оказывается недостаточной. К надпочечным желтухам относятся также следующие так называемые ретенционные желтухи, когда билирубин образуется в повышенном количестве и не выделяется из организма:

  1. Болезнь Мейленграхта — Жильбера, которая возникает в связи с врожденной недостаточностью фермента трансглюкуронидазы в клетках печени, в результате чего «непрямой» билирубин не может превратиться в «прямой» и накапливается в крови.
  2. Семейная ядерная желтуха Криглера-Наджара развивается в результате врожденного отсутствия ферментных систем, обеспечивающих связь билирубина с глюкуроновой кислотой: при этом в сыворотке крови накапливается высокая концентрация «непрямого» билирубина, оказывающего токсическое действие на ядра головного мозга.
  3. Постгепатитная функциональная гипербилирубинемия может быть связана с нарушением механизма захвата билирубина из крови (Schmid, 1959) или с повышенным гемолизом, который,по мнению Kalk (1955), развивается на почве накопления аутоантител, обнаруживаемых с помощью реакции Кумбса. Известно, что при вирусных заболеваниях изменившиеся под действием вируса эритроциты могут приобретать антигенный характер, в результате чего в организме начинают вырабатываться антитела, в том числе и гемолизины (И. Мадьяр, 1962). Надпеченочные желтухи протекают обычно с нормальной активностью альдолазы, трансаминаз и щелочной фосфатазы, с неизменной электрофореграммой и нормальными осадочными пробами. При гемолитических желтухах выражены гепатолиенальный синдром, ретикулоцитоз, сниженная резистентность эритроцитов и анемия.

Печеночные (гепатоцеллюлярные) желтухи развиваются вследствие первичного поражения печени и встречаются при болезни Боткина, циррозах печени, токсических и холангиолитических гепатитах, инфекционном мононуклеозе, холестатических гепатозах и некоторых других заболеваниях. При этих желтухах увеличивается главным образом количество прямого билирубина в крови, так как образование билирубинглюкуронида при этих желтухах страдает мало, но вследствие нарушения балочной структуры печени или закупорки билиарной системы он не может выделяться в кишечник и проникает в кровяное русло. Содержание непрямой его фракции тоже возрастает, но в значительно меньшей степени. Процесс гипербилирубинемии при паренхиматозном гепатите является сложным и может зависеть от следующих причин:

  1. от нарушения экскреции билирубина из печеночных клеток в желчные капилляры;
  2. от затрудненного оттока желчи в силу явлений внутрипеченочной обтурации глюкуронид-билирубин забрасывается в кровяное русло (регургитации желчи);
  3. от нарушения синтеза глюкуронидов в микросомах гепатоцитов (страдают трансферразные системы);
  4. от нарушения поступления билирубина в пораженные печеночные клетки.
Читайте также:  При остром вирусном гепатите в интоксикационный синдром наиболее выражен

Страдает функция «захватывания» билирубина гепатоцитами.

Подпеченочные желтухи развиваются при желчнокаменной болезни, опухолях и стенозах в области желчных путей, а также при бактериальных холангитах. При подпеченочных или так называемых застойных желтухах также увеличивается главным образом «прямой» билирубин, что связано с переполнением желчных путей вследствие закупорки, разрыва их и последующего перехода желчи в кровяное русло. Одновременно слегка повышается содержание «непрямого» билирубина, так как последний переполняет печеночную клетку, которая не в состоянии перевести весь «непрямой» билирубин в «прямой», что вызывает его повышение в сыворотке крови (Й. Тодоров, 1960). Из сказанного ясно, что количественное определение общего «прямого» и «непрямого» билирубина в сыворотке крови имеет большое клиническое значение. Выявление повышенного «прямого» или «непрямого» билирубина служит наиболее точным методом дифференцирования гемолитических желтух от застойных и паренхиматозных. Для определения общего билирубина и его фракций в настоящее время отдают предпочтение методу Ендрассика, Клеггора и Трафа, который является более точным, чем метод ван ден Берга. При определении билирубина по ван ден Бергу для осаждения белков применяется этиловый спирт, с которым в осадок увлекается и часть адсорбированного на нем пигмента, вследствие чего показатели билирубина могут быть понижены. Принцип метода Ендрассика, Клеггора и Трафа заключается в том, что в присутствии раствора кофеина билирубин (свободный и связанный) легко образует азобилирубин, определяемый колориметрически. В одной пробирке, добавляя кофеин, определяют общий билирубин, в другой (без кофеина) — прямую его фракцию. Концентрация непрямого билирубина определяется по разности между общим и прямым билирубином. В настоящее время определенное клиническое значение придают также вычислению билирубинового показателя (уровень связанной фракции по отношению к содержанию всего билирубина, выраженный в процентах). Так, по данным А. Ф. Блюгера (1962), общий билирубин у здоровых лиц колеблется в пределах 0,44-0,60 мг%, а билирубиновый показатель у них равен нолю. При болезни Боткина в преджелтушном периоде уже можно обнаружить незначительную гипербилирубинемию за счет прямой фракции. Количество билирубина в сыворотке крови в этот период может быть и нормальным, но и тогда признаком нарушения пигментной функции печени может служить наличие прямого билирубина. На высоте желтухи билирубиновый показатель может превышать даже 50%. В периоде выздоровления связанная фракция билирубина исчезает из крови очень медленно, в связи с чем даже при нормальном уровне билирубина еще длительное время остается прямой или замедленно прямой реакция ван ден Берга, что является важным признаком неполного выздоровления. Связанная фракция билирубина нередко обнаруживается и при безжелтуш-ных формах болезни Боткина, когда уровень общего билирубина не превышает норму. Билирубиновый показатель может также значительно возрастать при под-печеночных желтухах. При гемолитических желтухах этот показатель бывает значительно ниже, чем у больных с паренхиматозной или застойной печенью, и равняется 20% и ниже. При печеночной и подпеченочной желтухах при гипербилирубинемии, превышающей 1,5-2 мг%, билирубин в виде желчных пигментов появляется в моче. Отсутствие желчных пигментов в моче при гипербилирубинемии свидетельствует о гемолитической природе желтухи. Диагностическое значение имеет также и определение билирубина в моче.

Уробилинурия обычно наблюдается в преджелтушном периоде эпидемического гепатита, а также на спаде желтухи. Последнее обстоятельство является признаком наступившего криза. Уробилинурия может сохраняться длительное время в период реконвалесценции и свидетельствовать о наличии незаконченного патологического процесса. На высоте желтухи при эпидемическом гепатите уробилин в моче, повышенный в преджелтушном периоде, может исчезнуть. При обтурационных желтухах уробилин в моче может отсутствовать долгое время. Одним из постоянных признаков гемолитических желтух является уробилинурия, которая связана с избыточным поступлением уробилина из кишечника и относительной недостаточностью функции печени (печень не успевает избыточное количество непрямого билирубина связать с глюкуроновой кислотой).

Стеркобилин в кале при гемолитической желтухе повышается, а при холестетической форме болезни Боткина и при подпеченочных желтухах может длительное время наблюдаться ахолия. Изучение пигментной функции печени при желтухах различной этиологии хотя и может иметь диагностическое значение, однако путем определения общего билирубина и его фракций, уробилина в моче и стеркобилина в кале не всегда бывает возможным отдифференцировать один вид желтухи от другого. Наибольшие трудности встречаются при диагностике и дифференциальной диагностике холестатических, затяжных форм болезни Боткина с желтухами, развивающимися вследствие злокачественных новообразований в области гепато-панкреато-дуоденальной зоны, с циррозами печени и желчнокаменной болезнью. Для целей диагностики и дифференциальной диагностики желтух различного генеза в настоящее время применяется комплекс лабораторных методов исследования, который включает в себя ферментные пробы, определение белка, белковых фракций сложных белковых комплексов, коллоидные пробы, определение протромбинового индекса (нагрузка витамином К), пробы, основанные на изучении липоидной, углеводной, экскреторной функций печени и др. В связи с тем, что физиологическое значение этих показателей, механизм их изменений при патологических состояниях изложены при описании соответствующих видов обмена, в настоящем разделе мы ограничимся сводной таблицей этих показателей при желтухах различной этиологии (табл. 2).

В клинике, руководимой А. Ф. Билибиным, для дифференциальной диагностики желтух различного генеза, помимо указанных лабораторных методов, с успехом применяется исследование содержания серомукоида, ставится проба Иргла, а также определяется вязкость сыворотки и плазмы. Серомукоид представляет собой сложный белковый комплекс, состоящий из белка и углеводных компонентов (гексозы, гексозамины и их производные). Процессы образования сывороточных гликопротеидов и их углеводных компонентов сравнительно мало изучены. Однако многочисленные экспериментальные данные и наблюдения клиницистов свидетельствуют о несомненной роли печени в их синтезе. При паренхиматозных гепатитах, а также при циррозах печени концентрация серомукоида в сыворотке крови понижается (Sarin с соавторами, 1961; Musil, 1961; А. Ф. Билибин, А. В. Змызгова, А. А. Панина, 1964), в то время как при желчнокаменной болезни она остается нормальной или слегка понижается, а при желтухах, развивающихся вследствие злокачественных новообразований, прогрессивно увеличивается по мере нарастания желтухи. Pagui (1960) считает, что быстрый и инфильтрирующий рост злокачественных опухолей способствует деполимеризации основного вещества соединительной ткани, богатой сахаридными группами с последующим переходом их в кровь, что приводит к повышению содержания серомукоида. Другие авторы (Kompecher с соавторами, 1961) повышение сывороточных мукоидов объясняют метаболизмом раковой ткани, так как в растущей опухоли усиленно происходит анаэробный гликолиз, в результате чего образуются различные углеводные компоненты, которые через расширенные лимфатические сосуды в повышенном количестве поступают в кровь. По их мнению, попадая в кровь, углеводные компоненты способствуют метастазированию.

Проба Иргла, выявляющая патологические глюколипиды, у большинства больных эпидемическим гепатитом бывает отрицательной на всем протяжении болезни. У части больных, главным образом отягощенных различными сопутствующими заболеваниями, она может выпадать положительной (+ или ++), но по мере угасания клинических симптомов быстро становится отрицательной. При злокачественных новообразованиях, сопровождающихся желтухой, наблюдается совершенно иная динамика пробы Иргла. Степень помутнения ее прогрессивно увеличивается вплоть до появления флокуляции, и у таких больных она обычно бывает резко положительной (+++).

Вязкость сыворотки и плазмы подвержена меньшим колебаниям, чем вязкость цельной крови, так как их состав отличается более значительным постоянством. Вязкость сыворотки и плазмы зависит в первую очередь от коллоидного состояния белка, а именно от величины и формы белковых молекул, сложной глобулярной структуры, степени электрической проводимости и других физико-химических свойств сыворотки и плазмы, а также от содержания в них солей и ионов. При различных патологических процессах в организме нарушается химический состав, физические и физико-химические свойства крови, что в свою очередь влечет за собой изменение вязкости. В настоящее время сравнительная вискозиметрия используется в качестве теста для быстрой диагностики эпидемического гепатита, так как вязкость сыворотки и плазмы при болезни Боткина понижается, в то время как при желтухах другой этиологии она остается нормальной или повышается (М. Яломицяну с соавторами, 1961; А. В. Змызгова, А. А. Панина, 1963). Вискозиметрия — простой доступный метод лабораторного исследования, что является большим преимуществом его перед другими громоздкими и дорогостоящими методами лабораторных исследований.

Из табл. 2 видно, что нет ни одного лабораторного метода исследования, который бы являлся строго специфичным для того или иного вида желтухи. Однако комплексное, динамическое их определение в сочетании с клинической картиной болезни помогает клиницисту проводить дифференциальную диагностику, оценивать тяжесть патологического процесса, глубину поражения печени и степень наступившего выздоровления.

Как известно, у ряда лиц после перенесенной болезни Боткина иногда длительное время сохраняется гипербилирубинемия, которая может развиваться вслед за перенесенным эпидемическим гепатитом либо но прошествии нескольких недель и месяцев после выздоровления. У одних лиц гипербилирубинемия носит затяжной характер, у других периоды повышенного содержания билирубина чередуются с временным снижением или даже с нормализацией уровня его. Природа этого явления до настоящего времени полностью еще не расшифрована. Одни исследователи подобную билирубинемию считают проявлением скрыто протекающего хронического гепатита, другие связывают его с развитием холангио-холециститов, дискинезий желчных путей, рецидивов болезни, а третьи высказываются в пользу гемолитического происхождения ее. Е. М. Тареев (1958) такую гипербилирубинемию считает последствием перенесенного эпидемического гепатита и указывает на возможность ее медленного, но полного обратного развития. На основании литературных данных (М. В. Мельк, Л. Н. Осипов, 1963) можно выделить три основные группы с затяжной билирубинемией:

  1. Гипербилирубинемия после перенесенного эпидемического гепатита, связанная с предшествующим поражением печеночной паренхимы или внепеченочной билиарной системы. В клинической картине этой группы больных обращает на себя внимание выраженная желтушность кожи и склер при повышении прямого билирубина по ван ден Бергу до 3,5 мг%. Нередко желтуха сопровождается ахоличностью стула, темной окраской мочи, диспепсическими явлениями, иногда болями в области печени. При этом концентрация непрямого билирубина не повышается, а функциональные пробы печени изменяются (повышена активность ферментов, снижена сулемовая проба, наблюдается патологическая сахарная кривая, снижена проба Квика — Пытеля). Осмотическая стойкость эритроцитов и количество ретикулоцитов не отклоняются от нормы.
  2. Гемолитические желтухи различной этиологии, протекающие по типу затяжных или перемежающихся гипербилирубинемией, по поводу которых больные госпитализируются с ошибочным диагнозом эпидемического гепатита. В анамнезе этой группы больных нет указаний на перенесенный гепатит, а желтуха нередко проявляется после каких-либо перенесенных интеркуррентных заболеваний (грипп, пневмония и т. д.). Желтушность склер и кожи при этом выражена слабо, диспептические расстройства и боли в области печени встречаются редко. Налицо гепатолиенальный синдром. Содержание билирубина повышается за счет главным образом непрямой его фракции. Реакция ван ден Берга, однако, быстрая, прямая или замедленная. У многих больных снижена осмотическая стойкость эритроцитов и повышена стойкость ретикулоцитов. Печеночные пробы изменяются мало.
  3. Группа больных с постгепатитным «гемолитическим компонентом» или так называемой постгепатитной функциональной гипербилирубинемией. Гемолитический компонент у них развивается непосредственно после эпидемического гепатита или спустя несколько месяцев и даже лет. Функциональная постгепатитная гипербилирубинемия свойственна лицам преимущественно молодого возраста. Постоянными кишечными симптомами постгепатитных гемолитических желтух являются: легкая желтушность кожи и склер, увеличение печени, частое увеличение селезенки, нормально окрашенный стул и моча, преобладание «непрямой» фракции билирубина сыворотки крови, а в случае нарастания обеих фракций билирубина «непрямой» билирубин увеличивается в большей степени. Возможно снижение осмотической стойкости эритроцитов, повышение количества ретикулоцитов. Постгепатитная функциональная гипербилирубинемия протекает с неизменными функциональными пробами печени. В гемограмме таких больных наблюдается лимфоцитоз, который не встречается при другой гемолитической желтухе (Л.П. Бриедис, 1962).

Как уже указывалось выше, гемолитические явления после перенесенного эпидемического гепатита многие исследователи связывают с явлениями аутосенсибилизации, в результате чего в крови таких больных обнаружены противоэритроцитарные аутоантитела (Hirscher, 1950; Jandl, 1955). С. О. Авсаркисян (1963), не отрицая возможности аутосенсибилизации, считает, что в развитии затяжной или перемежающейся гипербилирубинемии играет роль и неполноценность печени, что подтверждается выявлением аутоантител против ткани печени у части больных.

Изменение лабораторных показателей при желтухах различной этиологии

Лабораторные показатели Печеночные желтухи
болезнь Боткина цирроз печени холестатический гепатоз
Билирубиновый показатель Выше 50% Выше 50% Выше 50%
Желчные пигменты Положительные Положительные Положительные
Уробилинурия Положительная в преджелтушном периоде и на спаде желтухи, на высоте желтухи может отсутствовать Положительная
Альдолаза Рано и значительно повышается Нормальная или слегка повышена Норма
Трансаминазы (аспарагиновая, аланиновая) Рано и значительно повышаются Норма или слегка повышена Часто норма
Коэффициент де Ритиса Меньше 1 Меньше 1
Щелочная фосфатаза Слегка повышена Легкое или умеренное повышение Умеренно повышена
Белковые фракции Небольшая гипоальбуминемия и γ-глобулинемия Значительная гипоальбуминемия, резкая γ-глобулинемия Небольшое повышение α- и β-глобулинов
Тимоловая проба Высокая Норма Норма
Сулемовая проба Снижена Резко снижена Норма или слегка снижена
Реакция Таката-Ара + или ++ Резко положительная ++++ Отрицательная
Протромбин Снижен Снижен Норма
Протромбин после нагрузки витамином К Не нормализуется Не нормализуется
Холестерин Снижен Снижен Норма
Эфиры холестерина Значительно снижены Значительно снижены Норма
Сывороточное железо Повышено Нормально или слегка повышено Норма
Медь сыворотки Нормальная или слегка повышена Чаще незначительно повышена Неизвестно
Проба Иргла Отрицательная или слабо положительная, но быстро нормализуется Слабо положительная или положительная Неизвестно
Серомукоид Снижен Резко снижен Неизвестно
ДФА Умеренно повышен Умеренно повышен Слегка повышен
Бромсульфалеиновая проба Снижена Снижена Нормальна или понижена
Вязкость сыворотки и плазмы Снижена Нормальна или повышена Неизвестно
Картина крови Лейкопения, нормоцитоз, макроцитоз Лейкопения, тромбоцитопения, макроцитоз Не характерно
РОЭ Нормальна или замедлена Чаще ускорена Чаще ускорена
Читайте также:  Энтеросгель при вирусном гепатите

продолжение: Изменение лабораторных показателей при желтухах различной этиологии

источник

В физиологических условиях в организме (весом 70 кг) обрадуется за сутки примерно 250-300 мг билирубина. 70-80% этого количества приходится на гемоглобин эритроцитов, подвергающихся разрушению в селезенке. Ежедневно разрушается примерно около 1% эритроцитов или 6-7 г гемоглобина. Из каждого грамма гемоглобина образуется примерно 35 мг билирубина. 10-20% билирубина освобождается при расщеплении некоторых гемопротеинов, содержащих гем (миоглобин, цитохромы, каталаза и др.). Небольшая часть билирубина выделяется из костного мозга при лизисе незрелых эритроидных клеток костного мозга. Основным продуктом расщепления гемопротеинов является билирубин IX, продолжительность циркуляции которого в крови составляет 90 мин. Билирубин является продуктом последовательных стадий превращения гемоглобина, и в норме его содержание в крови не превышает 2 мг% или 20 мкмоль/л.

Нарушения пигментного обмена могут возникать в результате избыточного образования билирубина или при нарушении его выведения через желчный шунт. В обоих случаях повышается содержание билирубина в плазме крови свыше 20,5 мкмоль/л, возникает иктеричность склер и слизистых. При билирубинемии более 34 мкмоль/л появляется иктеричность кожи.

Вследствие аутокаталитического окисления двухвалентное железо гема переходит в трехвалентное, а сам гем превращается в оксипорфирин и далее – в вердоглобин. Затем железо отщепляется от вердоглобина, и под действием микросомального фермента гемоксигеназы вердоглобин превращается в биливердин, а тот при участии биливердинредуктазы переходит в билирубин. Образующийся таким образом билирубин называется непрямым или свободным, или, более понятно, – неконъюгированным. Он нерастворим в воде, но хорошо растворяется в жирах и поэтому токсичен для головного мозга. Особенно это касается той формы билирубина, которая не связана с альбуминами. Попадая в печень, свободный билирубин под действие фермента глюкуронилтрансферазы образует парные соединения с глюкуроновой кислотой и превращается в конъюгированный, прямой, или связанный билирубин – билирубин моноглюкуронид или билирубин диглюкуронид. Прямой билирубин растворим в воде и менее токсичен для нейронов головного мозга.

Билирубин диглюкуронид с желчью поступает в кишечник, где под действием микрофлоры происходит отщепление глюкуроновой кислоты и образование мезобилирубина и мезобилиногена, или уробилиногена. Часть уробилиногена всасывается из кишечника и по воротной вене поступает в печень, где полностью расщепляется. Возможно поступление уробилина в общий кровоток, откуда он попадает в мочу. Часть мезобилиногена, находящегося в толстой кишке, восстанавливается до стеркобилиногена под влиянием анаэробной микрофлоры. Последний выделяется с калом в виде окисленной формы стеркобилина. Принципиальной разницы между стеркобилинами и уробилинами нет. Поэтому в клинике их называют уробилиновыми и стеркобилиновыми телами. Таким образом, в норме в крови находят общий билирубин 8-20 мкмоль/л, или 0,5-1,2 мг%, из которого 75% относится к неконъюгированному билирубину, 5% – билирубин-моноглюкуронид, 25% – билирубин-диглюкуронид. В моче обнаруживается до 25 мг/л в сутки уробилиногеновых тел.

Возможности печеночной ткани образовывать парные соединения билирубина с глюкуроновой кислотой очень высоки. Поэтому если образование прямого билирубина не нарушено, а имеется расстройство внешнесекреторной функции гепатоцитов, уровень билирубинемии может достигать значений от 50 до 70 мкмоль/л. При повреждении паренхимы печени содержание билирубина в плазме повышается до 500 мкмоль/л и более. В зависимости от причины (надпеченочная, печеночная, подпеченочная желтухи) в крови может повышаться прямой и непрямой билирубин (Таблица 3).

Билирубин плохо растворим в воде и плазме крови. Он образует специфическое соединение с альбумином по высокоаффинному центру (свободный, или непрямой билирубин) и транспортируется в печень. Билирубин в избыточном количестве непрочно связывается с альбумином, поэтому легко отщепляется от белка и диффундирует в ткани. Некоторые антибиотики и другие лекарственные вещества, конкурирующие с билирубином за высокоаффинный центр альбумина, способны вытеснять билирубин из комплекса с альбумином.

Желтуха (icterus) – синдром, характеризующийся желтушным окрашиванием кожи, слизистых, склер, мочи, жидкости полостей тела в результате отложения и содержания в них желчных пигментов – билирубина при нарушениях желчеобразования и желчевыделения.

По механизму развития выделяют три вида желтух:

  • Надпеченочная, или гемолитическая желтуха, связанная с повышенным желчеобразованием вследствие усиленного распада эритроцитов и гемоглобин содержащих эритрокариоцитов (например, при В12,фолиево-дефицитных анемиях);

· Печеночная, или паренхиматозная желтуха, вызванная нарушением образования и выделения желчи гепатоцитами при их повреждении, холестазе и энзимопатиях;

· Подпеченочная, или механическая желтуха, возникающая в результате механического препятствия выделению желчи по желчевыводящим путям.

Надпеченочная, или гемолитическая, желтуха. Этиология: причины следует связать с усиленным гемолизом эритроцитов и разрушением гемоглобинсодержащих эритрокариоцитов в результате неэффективного эритропоэза (острый гемолиз, вызванный разными факторами, врожденные и приобретенные гемолитические анемии, дизэритропоэтические анемии и т.п.).

Патогенез. Усиленный против нормы распад эритроцитов ведет к увеличенному образованию свободного, непрямого, неконъюгированного билирубина, который является токсичным для ЦНС и других тканей, в т.ч. для гемопоэтических клеток костного мозга (развитие лейкоцитоза, сдвиг лейкоцитарной формулы влево). Хотя печень обладает значительными возможностями для связывания и образования неконъюгированного билирубина, при гемолитических состояниях возможна функциональная ее недостаточность или даже повреждение. Это ведет к понижению способности гепатоцитов связывать неконъюгированный билирубин и далее превращать его в конъюгированный. Содержание билирубина в желчи увеличивается, что является фактором риска для образования пигментных камней.

Таким образом, не весь свободный билирубин подвергается переработке в конъюгированный, поэтому определенная его часть в избыточном количестве циркулирует в крови.

  • Это получило наименование (1) гипербилирубинемия (более 2 мг%) за счет неконъюгированного билирубина.
  • (2) ряд тканей организма испытывает токсическое действие прямого билирубина (сама печень, центральная нервная система).
  • (3) вследствие гипербилирубинемии в печени и других экскреторных органах образуется избыточное количество желчных пигментов:
    • (а) глюкурониды билирубина,
    • (б) уробилиноген,
    • (в) стеркобилиноген, (что ведет к усиленному их выведению),
  • (4) выведение избыточного количества уробилиновых и стеркобилиновых тел с калом и мочой.
  • (5) вместе с тем, имеет место гиперхолия – темная окраска кала.

Итак, при гемолитической желтухе наблюдаются:

Гипербилирубинемия за счет неконъюгированного билирубина; повышенное образование уробилина; повышенное образование стеркобилина; гиперхолический кал; отсутствие холемии, т.е. в крови не обнаруживается повышенного содержания желчных кислот.

Печеночная, или паренхиматозная, желтуха.Этиология.Причины печеночной желтухи разнообразны

  • Инфекции (вирусы гепатита A, B, C, сепсис и т.п.);

· Интоксикации (отравление грибным ядом, алкоголем, мышьяком, лекарственными препаратами и т.п.). Считается, например, что около 2% всех случаев желтух у госпитализированных больных имеют лекарственное происхождение;

  • Холестаз (холестатический гепатит);
  • Генетический дефект ферментов, обеспечивающих транспорт неконъюгированного билирубина, ферментов, обеспечивающих конъюгирование билирубина – глюкуронилтрансферазы.
  • При генетически обусловленных заболеваниях (например, синдром Криглера-Найяра, синдром Дабина-Джонсона и др.) Имеется ферментативный дефект в реакции конъюгации и при секреции. У новорожденных может быть транзиторная ферментативная недостаточность, проявляющаяся в гипербилирубинемии.

Патогенез. При повреждении гепатоцитов, как это бывает при гепатитах или приеме гепатотропных веществ, в разной степени нарушаются процессы биотрансформации и секреции, что отражается в соотношении прямого и непрямого билирубина. Однако обычно преобладает прямой билирубин. При воспалительных и иных повреждениях гепатоцитов возникают сообщения между желчными путями, кровеносными и лимфатическими сосудами, через которое желчь поступает в кровь (и лимфу) и частично в желчевыводящие пути. Этому же может способствовать отек перипортальных пространств. Набухшие гепатоциты сдавливают желчные протоки, чем создаются механические затруднения оттоку желчи. Метаболизм и функции печеночных клеток нарушаются, что сопровождается следующими симптомами:

· Гипербилирубинемия за счет конъюгированного и, в меньшей степени, непрямого билирубина. Повышение содержания неконъюгированного билирубина обусловлено снижением активности глюкуронилтрасферазы в поврежденных гепатоцитах и нарушением образования глюкуронидов.

  • Холалемия – наличие в крови желчных кислот.
  • Увеличение в крови конъюгированного растворимого в воде билирубина ведет к появлению в моче билирубина – билирубинурия, а дефицит желчи в просвете кишечника – постепенному снижению содержания уробилина в моче вплоть до полного его отсутствия. Прямой билирубин является водорастворимым соединением. Поэтому он фильтруется через почечный фильтр и выводится с мочой
  • Снижение количества стеркобилина вследствие ограниченного его образования в кишках, куда поступает уменьшенное количество глюкуронидов билирубина в составе желчи.
  • Снижение количества желчных кислот в кишечном химусе и кале вследствие гипохолии. Уменьшенное поступление желчи в кишечник (гипохолия) вызывает расстройства пищеварения.
  • Более весомое значение имеют нарушения межуточного обмена белков, жиров и углеводов, а также дефицит витаминов. Снижается защитная функция печени, страдает свертывающая функция крови.

Патогенетические механизмы гипербилирубинемии

Вид желтухи Причины Содержание билирубина в плазме
Надпеченочная Гемолиз эритроцитов Непрямой билирубин (при высокой конъюгации и относительной недостаточности секреторной активности гепатоцитов появление прямого билирубина до 15%)
Печеночная Нарушение транспорта в гепатоциты (медикаментозные препараты; недоношенность) Непрямой билирубин
Снижение активности УДФ-глюкуро-нилтрансферазы: а) генетические дефекты (синдром Криглера-Найяра, синдром Жильбера); б) приобретенные дефекты (сердечная недостаточность. Острая печеночная недостаточность) Непрямой билирубин
Повреждение печеночной паренхимы (острые и хронические гепатиты, действие токсических веществ, циррозы) Прямой билирубин (в зависимости от патогенеза возможно повышение содержания непрямого билирубина)
Нарушение секреции: а) генетические дефекты (синдром Дабина-Джонсона, синдром Ротора); б) вторичные расстройства (повреждения, вызванные лекарственными препаратами, рентгеноконтрастными веществами, недоношенность, холестаз беременных, волнообразное течение холестаза) Прямой билирубин
Подпеченочная Окклюзия желчного протока Прямой билирубин

Нарастание непрямого билирубина свидетельствует о значительной альтерации гепатоцитов. При хронической патологии печени повышение непрямого билирубина свидетельствует о тяжелом поражении гепатоцитов, которые не в состоянии детоксицировать билирубин, образующийся в результате физиологического гемолиза эритроцитов. При этом имеет существенное значение угнетение секреции прямого билирубина при развитии холестаза.

Подпеченочная, или механическая, желтуха.Этиология.Причинами механической желтухи являются те факторы, которые препятствуют продвижению желчи по желчевыводящим путям в двенадцатиперстную кишку. К ним следует отнести:

· Нарушение иннервации гладкой мускулатуры желчевыводящих путей (парезы, спазмы, дискинезии);

· Нарушение гуморальных механизмов регуляции желчевыделения (усиление желчевыделения при гиперпродукции секретина, холецистокинина, мотилина);

· Механическое препятствие оттоку желчи при сдавлении желчевыводящих протоков извне или изнутри (опухоли головки поджелудочной железы, сфинктера Одди, камни, рубцы, воспалительно-отечная ткань, гельминты, сгустившаяся желчь – холестаз).

Патогенез. Механическое препятствие оттоку желчи приводит к ее застою и повышению давления в желчевыводящих путях. Повышенное давление и застой желчи ведут к расширению желчных ходов, разрыву желчных капилляров и ее поступлению прямо или опосредованно через лимфатические сосуды в кровь. Так как печеночная и пузырная желчь содержит конъюгированный билирубин, то его содержание в крови повышается

· Гипербилирубинемия (за счет конъюгированного билирубина).

· Желчь и желчные кислоты в крови (холемия и холалемия),

· Повышение содержания холестерина (гиперхолестеринемия),

· Наблюдается желтушное окрашивание билирубинофильных тканей (кожа, слизистые оболочки, интима сосудов) – желтуха,

· Растворимый в воде конъюгированный билирубин экскретируется мочой (моча цвета пива) – билирубинурия

· В моче обнаруживаются желчные кислоты – (6) холалурия.

· Кал обесцвечен – ахолия вследствие нарушения образования стеркобилина.

Наличие в крови желчи и желчных кислот – холемия и холалемия формирует холемический синдром. Он характеризуется

· Астенией (токсическое действие на ЦНС желчных кислот, что проявляется раздражительностью, сонливостью, бессонницей, утомляемостью и т.п.),

· Кожным зудом (желчные кислоты раздражают рецепторы кожи),

· Возможен гемолиз эритроцитов, разрушение лейкоцитов и тромбоцитов,

· Под влиянием желчных кислот повышается проницаемость мембран, и в месте контакта тканей с ними развивается воспалительный процесс.

Ахолический синдром. Отсутствие желчи или недостаточное её поступление в двенадцатиперстную кишку носит название ахолии или гипохолии. Значение желчи многообразное: она сменяет желудочное – кислое пищеварение на щелочное, т.е. кишечное пищеварение. Желчь активирует и повышает переваривающую силу панкреатических ферментов, эмульгирует жиры, повышает тонус и усиливает перистальтику кишечника, способствует всасыванию липидов и жирорастворимых витаминов.Она участвует в пристеночном пищеварении, оказывает бактериостатическое действие. Стимуляторами желчеобразования и желчеотделения являются секретин, панкреозимин-холецистокинин, сама желчь, гастрин, глюкагон, соляная кислота, повышение активности блуждающего нерва.

Ахолия возникает вследствие нарушения проходимости желчных путей; поражений паренхимы печени или расстройств регуляции образования или выделения желчи. Ахолический синдром характеризуется нарушением кишечного пищеварения. Дефицит желчи в кишечном соке ведет к тому, что до 80% всего жира не переваривается и не всасывается в лимфу, а выводится из организма с калом – стеаторея. Вместе с тем страдает всасывание жирорастворимых витаминов (A, D, E, K), развиваются гиповитаминозы и авитаминозы, нарушается образование протромбина, формируется геморрагический синдром.

Читайте также:  Симптомы вирусного гепатита у ребенка

При ахолии страдает не только расщепление жиров, но углеводов и белков – угнетается ферментативная активность трипсина, амилазы, ослабляется тонус и перистальтика кишок, появляются запоры, сменяемые поносами из-за усиления гнилостных и бродильных процессов и снижения бактерицидных свойств кишечного химуса вследствие отсутствия желчи. Кал обесцвечен и зловонен.

При длительном застое желчи возможно повреждение гепатоцитов, в результате чего к механической желтухе присоединяется паренхиматозная, развивается билиарный цирроз и функциональная недостаточность печени.

Гипербилирубинемия новорожденных.В перинатальном периоде имеются нарушения обмена гемоглобина и его продуктов распада, что и определяет появление физиологической желтухи новорожденных. Причиной этого может быть усиленный гемолиз эритроцитов, неполноценный эритропоэз или функциональная ферментативная недостаточность гепатоцитов. В последнем случае нарушения носят транзиторный характер, постепенно транспорт билирубина и конъюгация нормализуются. Причиной желтухи у новорожденных может быть усиление резорбции билирубина в интерстициальном пространстве. Все представленные варианты возникновения желтухи у новорожденных сопровождаются повышением непрямого билирубина. Выявление у новорожденных прямого билирубина всегда свидетельствует о патологии печени.

Непрямой билирубин токсичен для клеток. Он обладает способностью взаимодействовать со структурами клеточных мембран, проникать внутриклеточно и благодаря невысокой растворимости откладываться в мембранах клеточных структур. Эта форма получила наименование ядерной желтухи новорожденных. Поскольку в головной мозг билирубин попадает с током крови, как и в другие органы, возможно развитие энцефалопатии, тяжесть которой зависит от степени гипербилирубинемии.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Билирубин образуется при распаде старых эритроцитов вретикулоэндотелиальной системе. Освобождающийся при этом изгемоглобина гем разлагается. Железо реутилизируется, а изтетрапиррольного кольца путем комплекса сложных окислительно-восстановительных реакций образуется билирубин. Другими егоисточниками являются миоглобин, цитохромы. Этот процесс происходит вклетках РЭС, в основном в печени, селезенке, костном мозге, которыевыделяют в кровь свободный или непрямой билирубин, нерастворимый вводе. За сутки распадается около 1% эритроцитов и образуется 100-250мг билирубина, 5-20% его образуется из незрелых, преждевременноразрушенных эритроцитов. Это так называемый ранний (шунтовой)билирубин.

Значительно, от 30 до 80% увеличивается доля раннего билирубинапри заболеваниях и поражениях с неэффективным эритропоэзом. Этосвинцовое отравление, железодефицитная анемия, пернициозная анемия,талассемия, эритропоэтическая порфирия, сидеробластическая анемия.

При этих заболеваниях имеет место увеличенная экскреция уробилинас калом, вследствие увеличенного общего оборота желчных пигментов, безукорочения жизни эритроцитов периферической крови. Кроме того раннийбилирубин образуется из неэритроцитарного гема, источником которогослужат, печеночные протеиды (миоглобин, каталаза, триптофанпирролаза

печени). Транспортируется прямой билирубин в связанной с альбуминомформе.

Обмен билирубина, В обмене билирубина печень выполняет 3функции: захват (клиренс) гепатоцитом из крови синусоида билирубина;связывание билирубина с глюкуроновой кислотой (конъюгация); выделениесвязанного (прямого) билирубина из печеночной клетки в желчныекапилляры (экскреция).

Рис. 7. Схема транспорта билирубинав печеночной клетке.

А — разрушенные эритроциты; Б -ранний билирубин; В — свободный (непрямой)билирубин. 1 — синусоид; 2 — гладкаяэндоплазматическая сеть; 3 — ядро; 4 -пластинчатый комплекс; 5 — желчный каналец; 6

кишка; 7 — цитоплазматические протеины.

Непрямой (свободный) билирубин(рис.7) отделяется от альбумина вЦитоплазменной мембране, внутриклеточныепротеины (V и Z) захватывают билирубин.

Печеночная мембрана активно участвует взахвате билирубина из плазмы. Затем непрямой билирубин в клеткепереносится в мембраны гладкой эндоплазматической сети, где билирубинсвязывается с глюкуроновой кислотой. Катализатором этой реакции являетсяспецифический для билирубина фермент уридилдифосфат (УДФ) -глюкуронилтрансферраза. Соединение билирубина с глюкуроновой кислотойделает его рстворимым в воде, что обеспечивает переход его в желчь,фильтрацию в почках и быструю (прямую) реакцию с диазореактивом,почему и называется прямым (связанным) билирубином.

Транспорт билирубина. Выделение билирубина в желчь — этоконечный этап обмена билирубина в гепатоцитах. Печень ежедневновыделяет до 300 мг билирубина и способна вылелить пигмента в 10 раз

больше, чем его образуется, т.е. в норме имеется значительныйфункциональный резерв для экскреции билирубина. При ненарушенномсвязывании переход билирубина из печени в желчь зависит от скоростисекреции желчи. Он переходит в желчь на билиарном полюсе гепатоцита спомощью цитоплазматических мембран, лизосом и пластинчатогокомплекса. Связанный билирубин в желчи образует макромолекулярныйсложнй коллоидный раствор (мицеллу) с холестерином, фосфолипидамии солями желчных кислот. С желчью билирубин попадает в тонкийкишечник. Кишечные бактерии восстанавливают его с образованиембесцветного уробилиногена. Из тонкого кишечника часть уробилиногенавсасывается и попадает в воротную вену и вновь поступает в печень(кишечно-печеночная циркуляция уробилиногена). В печени пигментполностью расщепляется.

Печень поглощает его не полностью, и небольшое количествоуробилиногена попадает в системную циркуляцию и выводится с мочой.Большая часть образующегося в кишечнике уробилиногена окисляется впрямой кишке до коричневого пигмента уробилина, который экскретируетсяс фекалиями.

В норме присутствующий в плазме билирубин по большей части(примерно 95%) не конъюгирован и, поскольку он связан с белками, онне фильтруется почечными клубочками и в моче здоровых людей необнаруживается. Билирубинурия отражает повышение концентрацииконъюгированного билирубина в плазме, и это всегда — признак патологии.

Частое проявление заболевания печени — желтуха, пожелтение тканейиз-за отложения билирубина. Клинически желтуха может не определятьсядо тех пор, пока концентрация билирубина в плазме не превыситверхний предел нормы более чем в 2,5 раза, т.е. не станет выше 50мкмоль/л. Гипербилирубинемия может быть результатом повышенногообразования билирубина, нарушения его метаболизма, сниженияэкскреции или сочетания этих факторов.

ОБМЕН ЖЕЛЕЗА, ПОРФИРИНОВ, ГЕМОПРОТЕИНОВ

В сутки в организм человека с пищей поступает около 20 г (0,36мМоль) железа, но всасывается около 10% (2 мг). При железодефицитнойанемиии оно повышается до 3 мг. Основным местом всасывания являетсятощая кишка. Всасывание определяется состоянием запасов железа ворганизме. Оно увеличивается при уменьшении резервов железа ворганизме, уменьшается когда запасы его достаточны. Но всасываниежелеза может увеличиваться независимо от его запасов в организме приусиленном эритропоэзе.

Железо лучше всасывается в двухвалентной форме, но с пищейпоступает трехвалентное железо. Под влиянием желудочного сока железоосвобождается из пищи и превращается из трехвалентного в двухвалентное.Аскорбиновая кислота облегчает всасывание железа, а содержащаяся всухих завтраках фитиковая кислота, фосфаты и оксалаты снижают еговсасывание, образуя с железом нерастворимые комплексы.

Общее содержание железа в организме 4 г (70 мМоль). Две трети еговключены в гемоглобин. 35% депонировано в печени, селезенке, костноммозге. Основное депо — печень, содержащая до 500 мг железа.Депонирующим железо белком является ферритин, транспортирующим — трансферин. Около 15% железа содержится в миоглобине. Минимальноеколичество в железосодержащих ферментах: каталазе (антиоксидант) ицитохромах — гемопротеинах, являющихся ферментами, катализирующимимногие окислительные процессы в организме. Только 0,1% железасодержится в плазме, где оно связано с транспортным белком — трансферрином, каждая молекула которого связывает два иона железа.В плазме трансферрин насыщен железом на одну треть. В тканях оннаходится в форме ферритина. Свободное железо очень токсично исвязывание его с белками делает его нетоксичным, что обеспечиваетбезопасный транспорт и хранение железа в организме. При нормальном

обмене железо, откладывающееся в гепатоцитах в форме ферритина, вреакции Перлеа не выявляется.

Здоровый человек теряет в сутки около 1 мг железа, а женщины вовремя менструации еще 15-20 мг в месяц. До 70% железа выделяется черезпищеварительный тракт, остальное — с мочой и через кожу.

Гем — железосодержащее тетропиррольное красящее вещество. Онявляется составной частью кислородсвязывающих белков и различныхкоферментов оксидоредуктаз. Почти 85% биосинтеза тема осуществляетсяв костном мозге, остальное в печени. В синтезе гема участвуютмитохондрии и цитоплазма. Начиная с реакции соединения глицина исукцинил КоА через ряд химических превращений, начинающихся вмитохондриях, продолжающихся в цитоплазме с участием ее ферментов, азатем вновь в митохондриях до образования протопорфириногена IX. Послечего посредством специального фермента феррохелатазы в молекулувключается атом двухвалентного железа. Образованный гем или феррум-протопорфирин IX включается в гемоглобин или миоглобин, где он связаннековалентно, или в цитохром, с которым связывается ковалентно.

Гемопротеины представлены гемоглобином, миоглобином ицитохромами.

Гемоглобин — пигмент крови, переносящий кислород, содержится вэритроцитах. Он состоит из белка глобина и четырех молекул гема.Гемоглобин взрослого (НвА) содержит две пары полипептидныхцепей — альфа и бета, каждая из которых связана с одной молекулойгема. Гем в процессе транспорта обратимо связывается с кислородом.Миоглобин связывает кислород в скелетной мускулатуре,Цитохромы — ферменты, катализирующие многие окислительныепроцессы в организме.

Гемоглобин — переносчик кислорода в организме, находится в эритроците. Главная функция эритроцитов — транспорт кислорода отлегких в ткани и углекислого газа от тканей обратно в легкие. Высшиеорганизмы нуждаются для этого в специальной транспортной системе, таккак молекулярный кислород плохо растворим в воде: в 1 л плазмыкрови растворимо только около 3,2 мл кислорода. Содержащийся вэритроцитах белок гемоглобин способен связать в 70 раз больше — 220 млкислорода в литре. Содержание Нв в крови составляет 140-180 г/л у мужчини 120-160 г/л у женщин, т.е. вдвое выше по сравнению с белками плазмы (60-80 г/л). Поэтому Нв вносит наибольший вклад в образование рН-буфернойемкости крови.

При связывании кислорода с атомом железа в геме (оксигенация Нв) иотщеплении кислорода (дезоксигенация) степень окисления атома железа неменяется. Окисление двухвалентного железа до трехвалентного в геме носитслучайный характер. Окисленная форма Нв, метгемоглобин, не способнапереносить кислород. Доля метгемоглобина поддерживается ферментами(редуктаза) на низком уровне и составляет 1-2%.

В первые три месяца внутриутробной жизни образуетсяэмбриональные Нв. Затем до рождения доминирует фетальный Нв (НвF),который постепенно заменяется на первом месяце жизни на НвА.Эмбриональный и фетальный Нв обладают более высоким сродством ккислороду по сравнению с НвА, так как они должны переносить кислород изсистемы материнского кровообращения.

ОБМЕН МЕДИЗа сутки с пищей поступает 2-3 г меди. Она всасывается в

кишечнике и поступает в печень. 80-90% меди связывается cобразующимся в печени церулоплазмином. Частично входит в составнекоторых других ферментов: супероксиддисмутазы,

цитохромоксидазы. Незначительная часть может находиться в связи с

белком (купропротеиды) в печени, в плазме крови в виде лабильногокомплекса с альбумином и выводится с мочой.

Церулоплазмин является основным переносчиком меди в кровь, откудаон избирательно захватывается нуждающимися в нем органами,Выделяется медь в основном с желчью.

Помимо высокой оксидазной и антиоксидантной активностицерулоплазмин выступает катализатором при образовании гема,способствуя переходу неактивного, несвязывающего кислородтрехвалентного железа в активное двухвалентное железо. То естьпринимает большое участие в процессах кроветворения — в образованиигемоглобина.

УЧАСТИЕ ПЕЧЕНИ В ЭНЕРГООБМЕНЕПечень стоит на пути движения веществ из пищеварительноготракта в общий кровоток, что позволяет этому органу регулировать вкрови концентрацию метаболитов, прежде всего глюкозы, липидов,аминокислот. Печень поглощает большое количество глюкозы,превращая ее в гликоген. Это обеспечивает запасание энергетическогоматериала, способного отдать организму 400 кКал. В присутствиикислорода большинство клеток организма получают энергию за счетполного окисления питательных веществ (углеводов, аминокислот,липидов). При этом часть энергии сохраняется. Наиболее важной формойсохранения химической энергии в клетке является нуклеотидныйкофермент — аденозинтрифосфат (АТФ). Он образуется за счетокислительного фосфорилирования (АДФ + фосфат), с расходованиемэнергии (эндоэргическая реакция), тогда как на расщепление АТФ на АДФи фосфат высвобождается энергия (высоко экзоэргическая реакция).

Рис.8 Запасание и использование энергии в животном организмеэнергия, высвобождающаяся при окислении мономеров (аминокислот,моносахаров, жирных кислот и глицерола), используется на синтез АТФ изАДФ и Н3Р04, а запасенная в АТФ энергия затрачивается на выполнение всехвидов работ, свойственных животному организму (механическойхимической, осмотической и электрической) (цит. По Бышовскому А.Ш.Терсеневу О.А., 1994).

Рис. 9 Реакция высвобождения энергии

Высвобождение энергии происходит при взаимодействии АТФ с ионом+НОН (рис. 9)

Менее активно образуется АТФ при анаэробном гликолизе. Прианаэробном разрушении глюкозы образуется лактат и незначительная частьэнергии идет на синтез АТФ но это дает возможность клетке длясуществования в условиях недостатка или отсутствия кислорода. При

аэробном гликолизе окисление одной молекулы глюкозы сопровождаетсясинтезом 32 молекул АТФ.

Значительным источником энергии являются жирные кислоты. Ввиде ацил-карнитина они попадают в митохондриальный матрикс. гдеподвергаются бета-окислению с образованием ацил-КоА. В результатепоследующих реакций деградации жирной кислоты синтезируется 106молекул АТФ. что соответствует свободной энергии 3300 кДж/моль. чтозначительно выше в сравнении с распадом глюкозы.

Поэтому жиры представляют собой очень выгодную форму сохраненияэнергии.

При недостаточном энергообеспечении (сахарный диабет,интенсивные энергозатраты, не восполняемые за счет поступления глюкозыизвне, голодание) в печени ускоряются процессы распада жирныхкислот, сопровождающиеся интенсификацией кетогенеза. Источникжирных кислот — липолиз в жировых депо. Кетоновые тела, в основном,ацетоацетат, служат источником энергии для других тканей, преждевсего для мышц, мозга. При достаточном энергообеспечении организма

жирные кислоты используются для синтеза в печени триацилглицеридов,

фосфолипидов, которые активнее включаются в транспортные формы

Свои энергетические потребности печень обеспечивает главнымобразом за счет кетокислот, образующихся при дезаминировании ипереаминировании аминокислот. Использовать в качестве энергетическогоматериала ацетоацетат печень не может, т.к. отсутствуеттрансфераза, обеспечивающая образование его активной формы —ацетоацктил-КоА.

По мнению Л. Страйр печень, не используя в качестве источникаэнергии ацетоацетат является «альтруистическим органом».

источник