Меню Рубрики

Какой вирусный гепатит содержит в своем геноме днк

Вирусы гепатита (Hepatitis viruses) — вирусы, способные вызывать специфическое поражение печени, называемое гепатитом. Они относятся к разным тaкcoнoмичeским группам и имеют разные биологические свойства. Объединяющим признаком служит только способность вызывать гепатит у человека. Гепатит может вызываться многими вирусами, например, такими как вирус желтой лихорадки, вирус герпеса, вирус краснухи, вирусы Коксаки, вирус лихорадки Ласса, вирусы лихорадок Марбург-Эбола и другими, составляя часть генерализованного процесса. Известны также вирусы гепатита животных, как-то: собак (аденовирус), мышей (коронавирус), уток (энтеровирус) и, вероятно, обезьян.
В этом обзоре мы сосредоточим внимание только на вирусах, основным местом репликации которых, является (или предполагается) печень. В подавляющем большинстве случаев они вызывают воспаление гепатоцитов.
История открытия вирусов, ответственных за развитие гепатита, включает в себя: героические (опыты по самозаражению) и трагические (насильственное заражение заключенных в концлагере) события; выдвижение и опровержение разнообразных гипотез, поражения и удачи исследователей. Открытие «новых» вирусов, ответственных за гепатит, стало возможным благодаря появлению новых иммунохимических, электронномикроскопических и молекулярно-
биологических методов исследования.
Представление об этиологии гепатита прошло эволюцию от предположения существования единого агента (вируса), вызывающего воспаление клеток печени, до доказательства факта многообразия вирусов, отвечающих за этот процесс. Гипотеза об уникальности вирусов гепатита человека в природе так же была опровергнута. Сегодня известны 9 вирусов, которые можно отнести к вирусам гепатита (табл.1). Они представлены ДНК- и РНК-содержащими вирусами, отличающимися по биологическим свойствам, входящими в состав различных семейств. Традиционно в основу их классификации положены различия в характеристике основных путей передачи вируса. Фекально-оральный механизм
передачи характерен для ВГА и ВГЕ, парентеральная передача — для ВГВ, ВГС, ВГD, ВГG, TTV, SENV и NFV. Исходом острого гепатита, вызванного этими вирусами, помимо выздоровления может быть хронический гепатит, цирроз, первичный рак печени и длительное (иногда пожизненное) бессимптомное носительство вируса. При гепатитах А и Е хроническая инфекция не развивается. Отдельные сообщения о формировании хронического гепатита А и Е на фоне выраженного иммунодефицита отмечают эксклюзивность данного явления.
Существование случаев гепатита, при котором не удается провести этиологическую расшифровку, обозначают гепатитами «ни А, ни G» или «криптогенными». Предполагают существование как минимум двух агентов, отвечающих за развития гепатитов вирусной природы.

Таблица 1. Характеристика вирусов вызывающих гепатит и претендующие на эту роль.

Вирус HAV HBV HCV HDV HEV
Нуклеиновая кислота Одноцепочечная РНК Двуцепочечная кольцевая ДНК Одноцепочечная линейная РНК Одноцепочечная линейная РНК Одноцепочечная РНК
Семейство Picornaviridae Hepadnaviridae Flaviviridae Не классифицирован Hepeviridae
Род Hepatovirus Hepacivirus Hepevirus
Размер частицы 27-32 нм 40-48 нм 50 нм 28-39 нм 27-34 нм
Генотипы 6 8 6 3 4
Хозяин Человек, обезьяны Человек, обезьяны Человек Человек, сурок Человек,обезьяны
Основные антигены (белки) АgHAV НВsAg, НВсAg Структурные HDAg HEAg
Интеграция нуклеиновой кислоты Нет Есть Нет Нет Нет
Основное место репликации Гепатоцит, пиеровы бляшки толстого кишечника Гепатоцит Гепатоцит Гепатоцит Гепатоцит
Устойчивость Высокая Высокая Средняя Высокая Средняя
Передача вируса Энтеральная Парентеральная Парентеральная Парентеральная Энтеральная
Заболевание Острый гепатит Острый и хронический гепатит Острый и хронический гепатит Острый и хронический гепатит Острый гепатит
Носительство Нет Есть Есть Есть Нет
Наличие вакцины Есть Есть Нет Нет Есть

Вирусы с энтеральной передачей, вызывающие гепатит

Вирус гепатита А (ВГА). В 1973 г. S. Feinston, A. Kaipican и R. Pursell опубликовали данные об обнаружении частиц вируса гепатита А в фекалиях добровольцев – больных инфекционным гепатитом. По современной классификации ВГА относится к роду Hepatovirus в составе семейства Picornaviridae, однако имеет ряд особенностей в структуре генома и биологических свойствах, которые отличают его от остальных членов этого семейства. К этим особенностям относят:
— различия в нуклеотидных и аминокислотных последовательностях ВГА и вирусов, составляющих семейство Picornaviridae;
— ВГА значительно трудней адаптируется к размножению в культуре клеток, чаще всего без цитопатогенного эффекта;
— имеет единственный серотип и один иммунодоминантный участок нейтрализации;
— не имеет перекрестных реакций с моноклональными антителами, направленными против антигенных детерминант пикорнавирусов;
— при величине рН, равной единице, ВГА сохраняет свою жизнеспособность, тогда как пикорнавирусы инактивируются;
— ВГА более устойчив к температурному воздействию. Это свойство вируса является
ключевым в понимании эпидемиологии гепатита А и важным при разработке современных дезинфицирующих препаратов и режимов их применения.
ВГА представляет собой сферические частицы диаметром 27-32 nm, построенные по типу икосаэндрической симметрии и лишенные оболочки (рис. 1).

Геном вируса гепатита А представлен одноцепочечной линейной молекулой РНК протяженностью около 7500 нуклеотидов. Капсид вируса гепатита А состоит из множества копий (n=60) каждого из четырех основных структурных белков. Их молекулярные массы, вычисленные по предсказанной аминокислотной последовательности, составляют для VP1, VP2, VP3 и VP4 33,2; 24,8; 27,8 соответственно, около 2,5 kd. Предполагается существование еще одного белка VP с молекулярной массой 2,4 kd.
Разработка и внедрение методов секвенирования ДНК (в случае гепатита А к ДНК) позволили оценить генетическое разнообразие изолятов ВГА, циркулирующих в различных регионах мира. Установлено наличие 6 генотипов ВГА.

Таблица 1. Характеристика вирусов вызывающих гепатит и претендующие на эту роль (продолжение)

Вирус GBV-C/HGV TTV SENV HFV
Нуклеиновая кислота Одноцепочечная РНК Одноцепочечная ДНК Одноцепочечная кольцевая Одноцепочечная ДНК
Семейство Flaviviridae Circoviridae Circoviridae Не классифицирован
Род Anellovirus
Размер частицы 50 нм 30-50 нм ? ?
Генотипы 6 Более 20 8 ?
Хозяин Человек, обезьяны Человек, обезьяны, коровы Человек Человек
Основные антигены (белки) Ag HGV Три белка ? ?
Интеграция нуклеиновой кислоты Нет Нет Нет Нет
Основное место репликации Лимфоциты, селезенка Гепатоцит Гепатоцит, ? Гепатоцит, ?
Устойчивость Средняя Нет данных Нет данных Нет данных
Передача вируса Парентеральная Парентеральная Парентеральная Парентеральная
Заболевание Острый и хронический гепатит Гепатит? Фиброз легких?Апластическая анемия?Поражение желчных путей Острый и хронический гепатит? Острый и хронический гепатит
Носительство Есть Есть (свыше 90%) Есть Есть
Наличие вакцины Нет Нет Нет Нет

Вирус, подобный ВГА человека, обнаружен у обезьян семейства игрункообразных (Callitrichidae). Анализ результатов секвенирования геномов ВГА обезьян Старого Света установил, что эти вирусы генетически отличаются от известных штаммов ВГА человека. Одним из нерешенных вопросов в патогенезе гепатита А является вопрос о месте первичного размножения ВГА после его попадания в организм человека с контаминированной вирусом водой или пищевыми продуктами. Ранее предполагали, что первичными местами размножения вируса является ротоглотка, возможно, слюнные железы и прилежащие к ним лимфатическиеи узлы. Сегодня считается вероятным, что ВГА проникает в организм человека из тонкой кишки в портальный кровоток, а затем в печень. При этом первичным местом размножения ВГА является эндотелий тонкой кишки и мезентериальные лимфатические узлы. Достигнув печени и проникнув внутрь гепатоцитов, ВГА начинает интенсивно размножаться. Затем он попадает в желчные протоки, в желчевыводящие пути и оказывается в просвете кишечника. Как правило, антитела к ВГА появляются рано и определяются в сыворотке в период экскреции вируса. На основании этих данных построено предположение о том, что поражение печени, а именно разрушение гепатоцитов, причинно связано с иммунопатологическим процессом, проявляющимся в виде зависимой от антител цитотоксичности лимфоцитов. По другим представлениям, гепатоциты повреждаются в результате прямого цитопатогенного действия ВГА. Разрушение клеточной мембраны и органелл клетки вызывает поражение гепатоцита под действием протеолитических ферментов. ВГА и его антигены, высвободившиеся из разрушенной клетки, приводят к активизации клеточного и гуморального звена иммунитета.

В 1980 г. группа исследователей под руководством R. Purcell установила нозологическую самостоятельность гепатита Е. В 1981 г. М.С.Балаян осуществил опыт самозаражения, в результате которого был открыт вирус гепатита Е. ВГЕ классифицирован как представитель семейства Hepeviridae (00.084), рода Hepevirus (00.084.0.01), вирус гепатита Е (00.084.0.01.001). На рис. 2 представлена модель строения ВГЕ.

Частицы вируса представляют собой округлые образования с диаметром около 32 нм (от 27 до 34 нм) без наружной оболочки. Вирус обладает кубической симметрией, построен из одинаковых структурных элементов. Геном ВГЕ представлен одноцепочечной РНК позитивной полярности. Её размер около 7500 нуклеотидных оснований. РНК ВГЕ включает в себя три открытые рамки считывания, каждая из которых кодирует синтез определенного белка или группы белков. Принципиально важной информацией является отсутствие у ВГЕ серологических вариантов. Исследования гепатита Е в разных регионах мира продемонстрировали повсеместное распространение ВГЕ. Причем изоляты вируса получены на эндемичных и неэндемичных территориях по гепатиту Е. Сравнительный анализ результатов секвенирования РНК ВГЕ установил гетерогенность популяции ВГЕ. Так сравнение изолятов ВГЕ, обнаруженных в Бирме и Мексике, выявило значительные различия между ними. За основу принадлежности к одинаковому генотипу ВГЕ признано не более 20% различий между нуклеотидами в 2 ОРС РНК ВГЕ. По предложению Y.Wang и соавт., классифицировано четыре генотипа ВГЕ (I, II, III, IV). Выделение субтипов ВГЕ не проводится, однако установлено, что изоляты, выделенные во время вспышек, значительно отличаются от результатов секвенирования РНК ВГЕ, выявленного у больных, гепатит Е которых не связан с групповой заболеваемостью. Вероятно, обнаружение субтипов различных генотипов вируса произойдет при накоплении фактической информации о циркуляции ВГЕ.
Важным является факт обнаружения рекомбинантных форм РНК ВГЕ в различных изолятах ВГЕ. Для обнаружения перекомбинаций внутри РНК ВГЕ использовали метод филогенетического и рекомбинантного анализа полноразмерных последовательностей РНК ВГЕ. Проанализированы 32 изолята ВГЕ, информация о которых опубликована в GenBank. Наличие перекомбинаций в РНК ВГЕ обнаружено, по крайней мере в двух изолятах. Образование таких изменений в геноме вируса возможно при ко- или суперинфицировании ВГЕ. Наличие случаев одновременного выявления РНК ВГЕ, представляющих различные геномы (III и IV генотип), зарегистрировано в Японии у пациента, ранее не выезжавшего в эндемичные по гепатиту Е регионы. В начале 90-х годов ХХ века результаты исследований, проведенных в Институте полиомиелита и вирусных энцефалитов им. М.П.Чумакова РАМН, позволили предположить, что гепатит Е — зооноз.
Вирусные частицы, подобные ВГЕ человека и/или антитела к нему, обнаружены у следующих животных и птиц:
— домашних и диких (кабанов) свиней. Сравнение изолятов вирусов, выделенных от человека и свиньи, выявило гомологию для участка РНК ВГЕ, кодирующего структурные белки, в 79-80% по нуклеотидам и в 90-92% – по аминокислотам. Исследования, проведенные на Тайване, позволили высказать предположение о том, что вирусы человека и свиньи, циркулирующие на острове, близки между собой (доля идентичности — 97,3%) и составляют отдельную ветвь, отличную от других известных изолятов ВГЕ. Эти и подобные результаты рассматриваются исследователями как косвенное доказательство значимости ВГЕ свиньи в распространении гепатита Е среди людей на неэндемичных территориях;
— вирусоподобные частицы ВГЕ обнаружены у оленей, мелких грызунов. Выявление антител к ВГЕ у собак, кошек, коров позволяет предположить циркуляцию ВГЕ среди этих животных;
— при исследовании образцов желчи цыплят обнаружены частицы вируса (без наружной оболочки,
размером 30-35 нм), подобные по своим морфологическим характеристикам вирусу гепатита Е человека.

Гомология между последовательностями РНК ВГЕ птиц и различными изолятами РНК ВГЕ человека и свиней составляет около 50%, что позволяет классифицировать ВГЕ птиц как представителя семейства Hepeviridae, в которую также входит вирус гепатита Е человека и свиньи. Учитывая, что ВГЕ птиц имеет общий(ие) антигенный(ые) эпитоп(ы) с капсидным белком ВГЕ человека и свиньи, F.Huang и соавт. предложили рассматривать вирус ВГЕ птиц как новый (пятый) генотип ВГЕ. Возможность преодоления межвидового барьера доказана при изучении случаев гепатита Е у людей, употребляющих в пищу сырую печень и плохо прожаренное мясо поросят и оленей, а также при экспериментальном заражении ВГЕ кур и поросят. Данные по изучению мутантных форм ВГЕ животных и птиц свидетельствуют о потенциальной возможности появления форм вируса гепатита Е, которые будут представлять опасность для человека.

Вирусы с парентеральной передачей, вызывающие гепатит

Начало современного периода изучения гепатита В связано с обнаружением Австралийского антигена — поверхностного антигена вируса гепатита В (HBsAg) — основного маркера вирусного гепатита В. За это открытие американский исследователь Б. Бламберг был награжден Нобелевской премией (1977 г.). Обнаружение вируса гепатита В (частицы Дейна) (ВГВ) и его дальнейшее исследование позволило получить принципиально новую информацию. Первоначально казалось, что ВГВ уникален и может быть обнаружен только у человека или человекообразных обезьян. Однако в дальнейшем удалось идентифицировать подобные вирусы у различных животных: североамериканских сурков, земляных белок, пекинских уток и других птиц.
Все эти вирусы, включая и вирус гепатита В человека, были объединены в новое семейство Hepadnaviridae. Основными характеристиками вирусов, составляющих это семейство, являются:

— палочковидные формы HВsAg
— наличие двуцепочечной ДНК (наименьшей из всех ДНК-содержащих вирусов);
— преимущественный гепатотропизм;
— возникновение персистирующей инфекции;
— размер частицы 40-45 нм;
— наличие нуклеокапсида вируса, покрытого оболочечными белками;
— наличие в структуре вируса ДНК-полимеразы;
— система репликации, включающая этап обратной транскрипции;
— возникновение вирус-ассоциированного первичного рака печени.
Морфологически вирус гепатита В представляет собой сложную сферическую частицу с диаметром 40-48 нм (в среднем – 42 нм). Частица состоит (рис. 3) из ядра – нуклеотида, имеющего форму икосаэдра, диаметром 28 нм, внутри которого находится двуцепочечная ДНК, концевой белок и фермент ДНК-полимераза. Нуклеотид построен из молекул HВcAg.
Наружную оболочку вируса толщиной 7 нм образует поверхностный антиген – HВsAg. Синтез НВsAg происходит в цитоплазме гепатоцитов, где его меньшая часть используется для сборки вируса гепатита В, а остальная – секретируется в межклеточное пространство и поступает в кровь.

По химическому составу НВsAg состоит из белков, гликопротеидов, липопротеидов и липидов (до 30 % от общего состава) клеточного происхождения.
Нуклеиновая кислота ВГВ представлена двуцепочечной кольцевой молекулой ДНК, протяжённостью около 3200 нуклеотидов, с колебаниями от 3020 до 3320. Геном вируса включает в себя четыре гена: S-ген (кодирующий HВsAg), состоящий из трех зон Pre-S1, Pre-S2 и S; C-ген (кодирующий HВсAg), состоящий из Pre-С и С зоны; Р-ген, несущий информацию о ферменте ДНК -полимеразе, обладающей функцией обратной транскриптазы; Х-ген, отвечающий за синтез Х-белка. Высокая информативная ёмкость ДНК ВГВ обеспечивается тем, что открытые рамки считывания частично перекрывают друг друга. ДНК ВГВ способна встраиваться (интегрировать) в клеточный геном и сохраняться в нем на протяжении многих лет. Внутри ядра вируса гепатита В, помимо ДНК вируса гепатита В, находится фермент ДНК- полимераза, который обладает и функцией обратной транскриптазы. Этот фермент необходим для достройки одноцепочечного участка короткой цепи ДНК ВГВ с образованием РНК-репликативного посредника (прегенома) с одновременной транскрипцией и трансляцией, т.е. для синтеза вирусспецифических белков. Помимо белков, необходимых для постройки частиц ВГВ, вирусная ДНК несет информацию о неструктурных белках, необходимых для его существования (HBeAg, HBsAg). В 1972 г. шведские ученые L.Magnius и J.Espmark опубликовали сообщение об обнаружении новой серологической системы гепатита В, обозначенной: e-антиген (HВеAg) и антитела к нему (anti-HВe). HВеAg был выявлен в сыворотках крови больных острым и хроническим HВsAg-позитивным гепатитом В и “носителей” HВsAg. Было установлено, что в сыворотках крови с регистрируемой положительной реакцией при определении ДНК-полимеразы ВГВ и ДНК ВГВ, значительно чаще выявляется HВеAg, чем anti-HВe. HВеAg играет ключевую роль в патогенезе различных фаз хронического гепатита В.
Установлено, что Х-белок ВГВ участвует в канцерогенезе и развитии первичного рака печени, ассоциированного с вирусом гепатита В. Кроме того он влияет на репликацию ВГВ и также может активировать репликацию других вирусов, например вируса иммунодефицита человека и HTLV-1. Именно это определяет негативную роль вируса гепатита В при ко- и суперинфицировании больных ВИЧ-инфекцией, вызывая ухудшение клинического течения и прогноза заболевания. Анализ ДНК различных изолятов ВГВ выявил существование 8 генотипов, обозначаемых латинскими буквами от А до Н. Установлено, что на территории может одновременно циркулировать несколько генотипов вируса, однако отдельный генотип может превалировать.
Cчитается, что ВГВ самый изменчивый из известных ДНК-содержащих вирусов. Сложный цикл репликации, включающий этап обратной транскрипции, обеспечивает его повышенную мутационную потенимеющие мутации во всех генах вируса. Сейчас установлено наличие более 150 мутантных штаммов ВГВ. Большинство из них не вызывают изменений свойств вируса, его антигенов или течения инфекционного процесса. Выявлены мутантные штаммы ВГВ, которые ассоциируются с такими изменениями, а также штаммы, связанные с резистентностью к отдельным лекарственным препаратам (например, к ламивудину). Широкое распространение гепатита В и интенсивная передача ВГВ среди лиц, составляющих группы повышенного риска (наркоманы, гомосексуалисты и др.), определяет возможность возникновения двойной инфекции с образованием рекомбинантных форм между различными генотипами ВГВ. Обнаружены рекомбинантные формы вируса, одновременно содержащие последовательности ДНК ВГВ следующих генотипов: B/C, A/D, A/B/C, A/E, A/G, C/D, C/F, C/G,C/неизвестный генотип.

Одним из основных свойств вируса, обеспечивающего широкое распространение ВГВ, является его высокая инфекционность. Для заражения гепатитом В достаточно от 10 до 100 частиц вируса. Некоторые сыворотки крови с наличием HBV инфекционны даже в разведениях 10 -7 — 10 -8 . Концентрация вирусных частиц в сыворотках крови с наличием HВsAg колеблется от 10-10 частиц в 1 мл до количеств, не доступных выявлению с помощью иммунной электронной микроскопии. Вирус гепатита В удается обнаружить во всех половых секретах инфицированного человека. Считают, что вирус гепатита В в 100 раз более инфекционен, чем ВИЧ. Высокая устойчивость HBV к различным воздействиям внешней среды также обеспечивает широкое распространение гепатита В.

Информация, полученная на начальных этапах изучения гепатита С при экспериментальном заражении человекообразных обезьян сыворотками крови, полученными от больных гепатитом ни А, ни В и его физико-химические свойства, позволила предположить его близость к вирусам, относящимся к семейству Flaviviridae. В дальнейшем вирус гепатита С стал членом этого семейства и нового рода Hepacivirus. Вирус гепатита С представляет собой сферическую частицу (со средним размером 50 нм), включающую в себя однонитевую, линейную молекулу РНК, протяженностью около 9600 нуклеотидов. Нуклеокапсид окружен липидной оболочкой и включенными в неё белковыми структурами, кодированными РНК ВГС (рис. 4).

Геном ВГС — однонитевая линейная РНК положительной полярности по своей организации подобен другим флавивирусам. В нём выделяют две зоны, кодирующие структурные и неструктурные (функциональные) белки. Гены, кодирующие структурные белки, расположены у 5’области генома вируса, а неструктурные — у 3’области. Ген ВГС имеет одну открытую рамку считывания (ОРС), позволяющую синтезировать полипептид (приблизительно в 3000 аминокислот), который под действием вирусных и клеточных протеаз нарезается на структурные и неструктурные белки.
Структурные белки вируса гепатита С: Core-Ag, E1 и Е2. Core-белок (р22) используются не только для постройки нуклеокапсида, но и участвует в репликации. Структурные белки, кодированные зоной РНК ВГС Е1 и Е2, входят в состав наружной оболочки вируса и несут на своей поверхности антигенные детерминанты вируса. Белки оболочки вируса участвуют в проникновении вируса в клетку, а также в развитии иммунитета и “ускользании” от иммунного ответа организма на инфицирование ВГС. Значительная изменчивость этих белков определяет трудности в создании эффективных вакцин против гепатита С.

Сравнительный анализ нуклеотидных последовательностей РНК — изолятов ВГС, полученных в различных регионах мира и даже в процессе заболевания от одного и того же пациента, выявил основную особенность этого вируса – высокую гетерогенность вирусной РНК. В участке гена, обозначенным Е2, выделяют «гипервариабильный регион». Изменения, происходящие в этом регионе РНК ВГС и соответствующие изменения в антигенных детерминантах Е2, играют ключевую роль в “ускользании” вируса от первичного иммунного ответа на инфицирование ВГС. В неструктурной зоне РНК ВГС выделяют участки, обозначенные как: NS2, NS3, NS4A, NS4B, NS5A и NS5B. Большинство из белков, кодированных нерепликации вируса. Антитела, вырабатываемые на неструктурные белки, не обладают протективными свойствами от вируса гепатита С. Вирус гепатита С по сравнению с вирусом гепатита В менее устойчив к физико-химическим воздействиям, и для заражения гепатитом С необходима большая инфицирующая доза. Кроме того, ВГС по сравнению с ВИЧ и ВГВ имеет более короткий период времени полужизни частицы вируса и более высокий уровень их продукции. Эти показатели для HCV составляют около 3-х часов и 1,1 х 10^12 синтезированных вирионов в день, а для ВГВ и ВИЧ соответственно 24 и около 6 часов при продукции 10^11 и 10^10 частиц вирусов. Ключевым звеном в понимании вирусологии, патогенеза и эпидемиологии гепатита С является факт высокой генетической вариабельности РНК HCV. Анализ гетерогенности РНК изолятов вируса гепатита С позволил выделить шесть генетически различных групп (генотипов) обозначаемых арабскими цифрами от 1 до 6, более 100 субтипов, обозначаемых буквами. Кроме того, установлено наличие множественных вариантов ВГС или квазивидов этого вируса. Их существование объясняет его “ускользание” из-под иммунного контроля организма, что определяет появление постоянно меняющихся антигенных структур вируса. Быстрое изменение ВГС лежит в основе длительного, возможно иногда и пожизненного, носительства вируса. Высокая изменчивость РНК ВГС определяется появлением точечных мутаций, вставок и делеций, возникающих при репликации вируса. Другой механизм, обеспечивающий изменчивость генома вирусов – рекомбинация, характерная для многих РНК-содержащих вирусов: вируса гриппа, ВИЧ, полиовируса и вируса Деньге. Изучение рекомбинации между разными генотипами ВГС находится на начальном этапе.

ВГD не принадлежит ни к одному из известных семейств вирусов животных. ВГD — сферическая частица со средним диаметром 36 нм (с колебаниями от 28 до 39 нм), состоящая из ядра, дельта-антигена и внешней оболочки, образованной поверхностным антигеном вируса гепатита В. Наличие оболочки, состоящей из HВsAg, определяет необходимость репликации вируса гепатита В для существования дельта вируса. Представляют интерес данные, полученные в эксперименте, о возможности размножения дельта вируса в организме приматов без участия вируса гепатита В, но при этом никаких повреждений не наблюдается.

Читайте также:  Время лечения вирусного гепатита в

Геном ВГD представлен однонитевой, циклической молекулой РНК, состоящей приблизительно из 1700 нуклеотидов. РНК ВГD — палочковидная, плотно скрученная структура, связанная с дельта-антигеном. В геноме ВГD имеется несколько открытых рамок считывания, как на геномных, так и антигеномных нитях РНК. Причем, в отличие от вироидов и сателлитных вирусов растений, в РНК закодирован вирусспецифический полипептид — HDAg. Анализ инфекционной активности дельта вируса показал, что она приблизительно на пять порядков ниже по сравнению с ВГВ. Сравнительный анализ результатов секвенирования РНК ВГD изолятов вируса в различных регионах мира позволили выделить три генотипа и несколько его субтипов.

История открытия этого вируса связана с экспериментами, проведенными Ф. Дейнхартом в 1967 г. по заражению обезьян сывороткой крови хиpуpга G. Barker, заболевшего гепатитом «ни А, ни В». Несколько успешных пассажей позволили высказать предположение о наличии в использованном материале нового вируса, обозначено го как агент, вызывающий гепатит G. По прошествии более 20 лет при использовании новых молекулярно-биологических методов тестирования и изучения нуклеиновых кислот удалось идентифицировать три новых вирусных агента: GBV-A и GBV-B у обезьян и GBV-C у человека. В дальнейшем научная группа фирмы «Аbbоtt» обнаружила у больных гепатитом вирус, обозначенный ВГG. Сравнительный анализ GBV-C и ВГG установил их близость (86% и 95% по нуклеотидным и аминокислотным последовательностям, соответственно).

Вирус гепатита G, так же как и ВГС, относят к семейству Flaviviridae. Геном вируса представлен одноцепочечной молекулой РНК с позитивной полярностью. По своей организации он подобен РНК ВГС, т.е.структурные гены расположены у 5’области генома, а неструктурные – у 3′ конца. Однако в отличие от РНК ВГС в РНК ВГG отсутствует гипервариабельная область. Изоляты ВГG удалось разделить на шесть филогенетических групп (генотипов), обозначенных арабскими цифрами. Учитывая, что первое выделение вируса было осуществлено у больного острым гепатитом, было высказано предположение о гепатотропности ВГG. Однако результаты последующих исследований установили отсутствие репликации ВГG в гепатоцитах. Считается, что местом размножения вируса является селезенка, клетки костного мозга и периферические мононуклеарные клетки крови (CD4+). Отсутствие ярко выраженной инфекции, вызываемой GBV-C/ВГG, сделало правомочными следующие обозначения вируса: «случайный вирус-турист» или «безопасный вирус».

Неожиданные результаты получены при изучении влияния GBV-C/ВГG на течение ВИЧ-инфекции. Установлено, что ко-инфекция GBV-C у ВИЧ-инфицированных людей приводит к снижению смертности и улучшению клинических показателей инфекции. Кроме того, достоверно повышалась эффективность высокоактивной антиретровирусной терапии. Позитивное действие GBV-C/ВГG объясняют тем, что оболочечные белки этого вируса связывают молекулы CD81+. На Т-клетках и вызывают дозозависимую секрецию RANTES (естественного лиганда CCR5), который, в свою очередь, вызывает погружение CCR5 вглубь клетки-мишени, блокируя проникновение ВИЧ. Интерес к этому вирусу связан с близостью свойств ВГG и ВГС. Это открывает возможность использования вируса гепатита G и вызванной им экспериментальной инфекции в качестве модели изучения гепатита С. В отличие от гепатита С гепатит G можно моделировать на нечеловекообразных обезьянах, что значительно удешевляет проведение таких исследований, прежде всего востребованных при разработке вакцины против гепатита С.

ТТ вирусы, «Torque teno virusis», или вирусы «тонкого ожерелья», (ТТV).

ТТV — представляет собой частицу размером 30 -50 нм (рис. 5). Геном вируса представлен ДНК, имеющей кольцевую структуру протяженностью около 3800 нуклеотидов. Вирус ТТ можно назвать первым членом нового семейства вирусов, которое могло быть обозначено Circinoviridae (от латинского «circinatio» — «описывающий круг»), род Anellovirus.

источник

Впервые частицы вируса гепатита В были обнаружены Д. Дейном в 1970 г. и впоследствии названы частицами Дейна.

Структура и химический состав. Вирионы, или частицы Дейна, имеют сферическую форму диаметром 42 нм. Сердцевина вириона — нуклеокапсид в форме икосаэдра — состоит из 180 капсомеров. Снаружи он окружен липосодержащей внешней оболочкой. В состав вириона входят ДНК, белки, ферменты, липиды и углеводы.

Строение вируса гепатита В

Схема строения вируса гепатита В

Структура генома HBV необычна. Он состоит из кольцевой двунитевой молекулы ДНК, которая в отличие от ДНК других вирусов имеет однонитевой участок. Его длина непостоянна и составляет 15—60 % длинной цепи. Кольцевая молекула ДНК может принимать линейную форму. В изолированном виде она не обладает инфекционными свойствами. В составе вирусного генома обнаружено около 6 генов, которые контролируют образование антигенов, структурных белков и не менее двух ферментов (ДНК-полимераза, протеинкиназа).

Антигены. В составе вируса гепатита В обнаружено 4 антигена: HBs, HBc, НВе и НВх.

HBs-антиген (ранее именовался австралийским антигеном) представляет собой гликопротеин с липидным компонентом, который содержится во внешней оболочке вириона. В его составе обнаружено два полипептидных фрагмента. Один из них (preSg) является полиглобулиновым рецептором, ответственным за адсорбцию вируса на аналогичных рецепторах гепатоцитов. Он связывается с сывороточным альбумином, который при полимеризации превращается в полиальбумин. Таким образом, в составе внешней оболочки вируса гепатита В имеются те же полиальбумины, которые содержатся в сыворотке крови человека. Второй фрагмент (preSi) обладает выраженными иммуногенными свойствами. Этот пептид, полученный генноинженерными методами, может быть использован для приготовления вакцины. HBs-антиген обнаруживается в крови.

НВс-антиген является нуклеопротеином. Он содержится в сердцевине вирионов, находящихся в ядрах гепатоцитов, но не поступающих в кровь.

НВе-антиген отщепляется от НВс-антигена при его прохождении через мембрану гепатоцитов, вследствие чего обнаруживается в крови.

НВх-антиген наименее изучен. Возможно, он имеет отношение к раковой трансформации гепатоцитов.

В организме больных гепатитом В синтезируются антитела к трем антигенам HBs, HBc, НВе.

HBsAg = поверхностный серцевинный антиген (белок) (4 фенотипа : adw, adr, ayw and ayr)

HBcAg = внутренний серцевинный антиген (белок) (единственный серотип)

Репродукция. Вирус гепатита В не репродуцируется в культурах клеток и куриных эмбрионах. Репликация и транскрипция вирусного генома происходит в ядрах гепатоцитов. При этом короткая цепь в кольцевой молекуле ДНК достраивается по длинной цепи с помощью ДНК-полимеразы, после чего начинается репликация обеих нитей. Необычным является возможность транскрибирования с вирусной ДНК молекулы РНК, выполняющей функцию матрицы для синтеза вирусной ДНК путем обратной транскрипции. Это происходит при участии имеющегося в зараженных гепатоцитах фермента обратной транскриптазы, происхождение которой неизвестно. Данный процесс, понятный в случае РНК-содержащих вирусов, которые с помощью обратной транскрипции получают возможность встроить свой геном (ДНК-транскрипт) в хромосому клетки хозяина, остается загадочным для ДНК-содержащего вируса гепатита В.

Одновременно с вирусного генома транслируется информация для синтеза на рибосомах гепатоцитов НВс- и HBs-антигенов, вирусспецифических ферментов и капсидных белков. Синтезированные нити ДНК собираются в нуклеокапсиды. При выходе из клетки они приобретают внешнюю оболочку с HBs- и НВс-антигенами.

источник

ДНК-содержащие вирусы несут в качестве генетического материала либо одно -, либо двухцепочечную ДНК, которая может быть как линейной, так и кольцевой. В ДНК закодирована информация о всех белках вируса. Вирусы, заражающие бактерии, называются бактериофагами. К ДНК-содержащим вирусам относятся вирусы гепатита В, герпес, вирусы оспы, паповавирусы, гепаднавирусы, парвовирусы.

По виду цепи ДНК вирусы делятся на 3 группы:

Первая группа — вирусы с двуцепочечной ДНК. Репликация ДНК-генома этих вирусов осуществляется при посредстве промежуточных молекул РНК: Молекулы РНК образуются в результате транскрипции вирусных ДНК в клеточном ядре хозяйским ферментом ДНК-зависимой РНК-полимеразой. Транскрибируется только одна из нитей вирусной ДНК. Синтез ДНК на мРНК происходит в результате реакции, катализируемой обратной транскриптазой: сначала синтезируется (-) нить ДНК, а затем на вновь синтезированной (-) нити ДНК тот же фермент строит (+) нить.

Вторая группа — вирусы с двуцепочечной ДНК.В одних случаях производством как мРНК, так и ДНК занимаются клеточные ферменты; в других случаях вирусы используют собственные ферменты. Бывает, что те и другие ферменты обслуживают процесс репликации и транскрипции. К этой группе относятся вирусы герпеса, оспы и др.

Третья группа — вирусы с одноцепочечной ДНК, с негативной, либо с позитивной полярностью. Попав в клетку, вирусный геном сначала превращается в двуцепочечную форму, это превращение обеспечивает клеточная ДНК-зависимая ДНК-полимераза. Транскрипция и репликация на последующих этапах происходит так же, как и для вирусов, с (±) ДНК-геномом. Структура вируса: это молекула ДНК в белковой оболочке, называемой капсидом. Однако есть много разных вариантов строения вирусов: от просто покрытой белком ДНК до сложных макромолекулярных комплексов, окруженных мембранными структурами, например, вирус оспы. Если у вируса есть мембрана‚ говорят, что он в оболочке, а если мембраны нет, то вирус называют «раздетым». Различают четыре основных вида капсидов: спиральные, икосаэдрические, сложные без оболочки, сложные с оболочкой. Неизменным итогом заражения клеток ДНК-содержащими бактериофагами является лизис. ДНК-содержащие вирусы животных вызывают лизис редко, однако клетки могут погибнуть из-за возникших при заражении хромосомных повреждений, вследствие иммунологической реакции организма или просто в результате нарушения вирусом нормальных клеточных функций.

ДНК-содержащие опухолеродные вирусы разделяются на 5 классов:
* Полиомавирусы – обезьяний вирус SV40, вирус полиомы мышей и вирусы человека ВК и JC.
* Папилломавирусы – 16 вирусов папилломы человека и множество папилломовирусов животных.
* Аденовирусы – 37 вирусов человека, множествоаденовирусов животных (например, 24 вируса обезьян и 9 вирусов крупного рогатого скота).
* Герповирусы – вирусы простого герпеса человека, цитомегаловирус человека, вирус Эпштейна– Барр и онкогенные вирусы приматов, лошадей, кур, кроликов, лягушек.
* Вирусы, подобные вирусу гепатита В, – вирус гепатита В человека, гепатита североамериканского сурка, гепатита земляных белок и гепатита уток.

IV. РНК-содержащие вирусы

РНК-содержащие микроорганизмы представлены гриппом и парагриппом, вирусом иммунодефицита человека (ВИЧ), гепатитом А парамиксовирусами, вирусами гриппа, коронавирусами, аренавирусами, ретровирусами, реовирусами, пикорнавирусами, капицивирусами, рабдовирусами, тогавирусами, флавивирусами и буньявирусами. РНК-содержащие вирусы не имеют ДНК, генетическая информация закодирована в РНК. Геномы почти всех известных РНК-содержащих вирусов — это линейные молекулы.

Геномы РНК-содержащих вирусов можно разделить на 3 группы.

Первая группа — это однонитевые геномы положительной полярности. Такие геномы обозначают как (+)РНК. Вирусные (+)РНК-геномы кодируют несколько белков. С помощью этого фермента синтезируются сначала (-) нити РНК фага, затем при наличии особого белка, называемого «хозяйским фактором», репликаза осуществляет синтез (+) нити РНК. На заключительной стадии из накопившихся вирусных белков и (+) РНК формируются вирионы. Упрощенная схема этого процесса такова:(+) РНК (-) РНК Инфекционный процесс состоит в проникновении вируса в растительную клетку с последующей быстрой утратой им капсида. Затем в результате трансляции непосредственно (+)РНК рибосомами клетки-хозяина образуются несколько белков, часть которых необходима для репликации вирусного генома.

Репликация осуществляется РНК-репликазой, продуцирующей копии РНК для новых вирионов. Синтез белка капсида происходит после того как инфицировавшая клетку РНК подвергается некоторой модификации, делающей возможным присоединение рибосом клетки к тому участку РНК, которым кодируется этот белок. Сборка вириона начинается с образования дисков из белка капсида. Два таких белковых диска образуют структуру, которая после связывания с ней РНК приобретает форму спирали. Присоединение молекул белка продолжается до тех пор, пока РНК не будет покрыта полностью. В окончательной форме вирион представляет собой цилиндр длиной 300 нм.

Вторая группа — это однонитевые геномы с негативной полярностью, т.е. (-)РНК-геномы.Поскольку (-)РНК не может выполнять функции мРНК, для образования «своих» мРНК вирус внедряет в клетку не только геном, но и фермент, умеющий снимать с этого генома комплементарные копии по схеме: (-) РНК (+) РНК. Этот вирусный фермент упакован в вирионе в удобной для доставки в клетку форме. Инфекционный процесс начинается с того, что вирусный фермент копирует вирусный геном, образуя (+) РНК, выступающую в качестве матрицы для синтеза вирусных белков, в том числе РНК-зависимой РНК-полимеразы, которая входит в состав образующихся вирионов. К вирусам с негативным РНК-геномом относятся: вирусы гриппа, кори, бешенства, желтой карликовости картофеля и др.

Третью группу составляют двунитевые геномы, (±) РНК-геномы. Известные двунитевые геномы всегда сегментированы, т.е. состоят из нескольких разных молекул, Сюда относятся реовирусы. Их размножение проходит по варианту, близкому к предыдущему. Вместе с вирусной РНК в клетку попадает и вирусная РНК-зависимая РНК-полимераза, которая обеспечивает синтез молекул (+) РНК. В свою очередь (+) РНК обеспечивает производство вирусных белков на рибосомах хозяйской клетки и служит матрицей для синтеза новых (-) РНК-цепочек вирусной РНК-полимеразой. Цепочки (+) и (-) РНК, комплексируясь друг с другом, образуют двунитевой (±) РНК-геном, который упаковывается в белковую оболочку. Реовирусы поражают респираторные и кишечные пути теплокровных животных (человека, обезьян, крупного и мелкого рогатого скота, летучих мышей.

Инфекционный процесс начинается с проникновения в клетку РНК. После частичного разрушения наружнего капсида ферментами лизосом РНК в образовавшейся таким образом субвирусной частице транскрибируется, ее копии покидают частицу и соединяются с рибосомами. Затем в клетке-хозяине продуцируются белки, необходимые для формирования новых вирусных частиц. Репликация РНК вирусов происходит по консервативному механизму. Одна из цепей каждого сегмента РНК служит матрицей для синтеза большого числа новых (+) цепей. На этих (+) цепях образуются затем как на матрице (–) цепи , (+) и (–) цепи при этом не расходятся, а остаются вместе в виде двухцепочечных молекул.

К РНК-содержащим вирусы также относятся вирусы, у которых цикл репликации генома можно разбить на две главные реакции: синтез РНК на матрице ДНК и синтез ДНК на матрице РНК. При этом в состав вирусной частицы в качестве генома может входить либо РНК, либо ДНК. Вирусная частица содержит две молекулы геномной одноцепочечной (+)РНК. В вирусном геноме закодирован необычный фермент, который обладает свойствами как РНК-зависимой, так и ДНК-зависимой ДНК-полимеразы.

V. Вирусные заболевания

Эволюция вирусов и вирусных инфекций. Хотя вирусы не являются полноценными живыми организмами, их эволюционное развитие имеет много общего с эволюцией других патогенных организмов. Для того чтобы сохраниться как вид, ни один паразит не может быть слишком опасным для своего основного хозяина, в котором размножается. В противном случае это привело бы к полному исчезновению хозяина как биологического вида, а вместе с ним и самого возбудителя. В то же время любой патогенный организм не сможет существовать как биологический вид, если у его основного хозяина слишком быстро и эффективно развивается иммунитет, позволяющий подавлять репродукцию возбудителя. Поэтому вирус, вызывающий острое и тяжелое заболевание у какого-либо вида животных, обычно имеет еще и другого хозяина. Размножаясь в последнем, вирус не наносит ему (как виду) существенного вреда, однако такое относительно безвредное сосуществование поддерживает циркуляцию вируса в природе. Так, например, вирус бешенства в природе сохраняется среди грызунов, для которых заражение этим вирусом не является смертельным. Природным резервуаром для вирусов лошадиных энцефалитов, особо опасных для лошадей и в несколько меньшей степени для человека, являются птицы. Эти вирусы переносятся кровососущими комарами, в которых вирус размножается без существенного вреда для комара. Иногда вирусы могут передаваться насекомыми пассивно (без размножения в них), однако чаще всего они репродуцируются в переносчиках. Для многих вирусов, например кори, герпеса и отчасти гриппа, основным природным резервуаром является человек. Передача этих вирусов происходит воздушно-капельным или контактным путем. Распространение некоторых вирусных заболеваний, как и других инфекций, полно неожиданностей. Например, в группах людей, проживающих в антисанитарных условиях, практически все дети в раннем возрасте переносят полиомиелит, обычно протекающий в легкой форме, и приобретают иммунитет. Если же условия жизни в этих группах улучшаются, дети младшего возраста обычно полиомиелитом не болеют, но заболевание может возникнуть в более старшем возрасте, и тогда оно часто протекает в тяжелой форме. Многие вирусы не могут долго сохраняться в природе при низкой плотности расселения вида-хозяина. Малочисленность популяций первобытных охотников и сборщиков растений создавала неблагоприятные условия для существования некоторых вирусов; поэтому весьма вероятно, что какие-то вирусы человека возникли позже, с появлением городских и сельских поселений. Предполагается, что вирус кори первоначально существовал среди собак (как возбудитель лихорадки), а натуральная оспа человека могла появиться в результате эволюции оспы коров или мышей. К наиболее «свежим» примерам эволюции вирусов можно отнести синдром приобретенного иммунодефицита человека (СПИД).«Новые» инфекции обычно протекают в тяжелой форме, нередко со смертельным исходом, но в процессе эволюции возбудителя они могут стать более легкими. Хороший пример – история вируса миксоматоза. В 1950 этот вирус, эндемичный для Южной Америки и довольно безобидный для местных кроликов, вместе с европейскими породами этих животных был завезен в Австралию. Заболевание австралийских кроликов, ранее не встречавшихся с данным вирусом, было смертельным в 99,5% случаев. Несколько лет спустя смертность от этого заболевания значительно снизилась, в некоторых районах до 50%, что объясняется не только «аттенуирующими» (ослабляющими) мутациями в вирусном геноме, но и возросшей генетической устойчивостью кроликов к заболеванию, причем в обоих случаях эффективная природная селекция произошла под мощным давлением естественного отбора.

Репродукция вирусов в природе поддерживается разными типами организмов: бактериями, грибами, простейшими, растениями, животными. Например, насекомые часто страдают от вирусов, которые накапливаются в их клетках в виде крупных кристаллов. Растения нередко поражаются мелкими и просто устроенными РНК-содержащими вирусами. Эти вирусы даже не имеют специальных механизмов для проникновения в клетку. Они переносятся насекомыми (которые питаются клеточным соком), круглыми червями и контактным способом, заражая растение при его механическом повреждении. Вирусы бактерий (бактериофаги) имеют наиболее сложный механизм доставки своего генетического материала в чувствительную бактериальную клетку. Сначала «хвост» фага, имеющий вид тонкой трубочки, прикрепляется к стенке бактерии. Затем специальные ферменты «хвоста» растворяют участок бактериальной стенки и в образовавшееся отверстие через «хвост», как через иглу шприца, впрыскивается генетический материал фага (обычно ДНК).

Более десяти основных групп вирусов патогенны для человека. Среди ДНК-содержащих вирусов это семейство поксвирусов (вызывающих натуральную оспу, коровью оспу и другие оспенные инфекции), вирусы группы герпеса (герпетические высыпания на губах, ветряная оспа), аденовирусы (заболевания дыхательных путей и глаз), семейство паповавирусов (бородавки и другие разрастания кожи), гепаднавирусы (вирус гепатита B). РНК-содержащих вирусов, болезнетворных для человека, значительно больше. Пикорнавирусы (от лат. pico – очень мелкий, англ. RNA – РНК) – самые мелкие вирусы млекопитающих, похожие на некоторые вирусы растений; они вызывают полиомиелит, гепатит А, острые простудные заболевания. Миксовирусы и парамиксовирусы – причина разных форм гриппа, кори и эпидемического паротита (свинки). Арбовирусы (от англ. arthropod borne – «переносимые членистоногими») – самая большая группа вирусов (более 300) – переносятся насекомыми и являются возбудителями клещевого и японского энцефалитов, желтой лихорадки, менингоэнцефалитов лошадей, колорадской клещевой лихорадки, шотландского энцефалита овец и других опасных болезней. Реовирусы – довольно редкие возбудители респираторных и кишечных заболеваний человека – стали предметом особого научного интереса в силу того, что их генетический материал представлен двухцепочечной фрагментированной РНК. Венерические болезни, ветряная оспа, гепатит, грипп, денге лихорадка, инфекционный мононуклеоз, корь, краснуха, менингит, оспа натуральная, полиомиелит, респираторные вирусные заболевания, свинка, Синдром приобретенного иммунодефицита (СПИД), энцефалит.

Возбудители некоторых болезней, в том числе очень тяжелых, не укладываются ни в одну из вышеперечисленных категорий. К особой группе медленных вирусных инфекций еще недавно относили, например, болезнь Крейтцфельда – Якоба и куру – дегенеративные заболевания головного мозга, имеющие очень продолжительный инкубационный период. Однако оказалось, что они вызываются не вирусами, а мельчайшими инфекционными агентами белковой природы – прионами.

Дата добавления: 2016-11-20 ; просмотров: 3427 | Нарушение авторских прав

источник

Геном вирусного гепатита В представлен циркулярной, частично двуцепочечной разновидностью ДНК (3,2 тн), циркулярность которой поддерживается связью 5′-концов. Структура генома отличается тем, что две цепи ДНК не вполне симметричны. Негативная цепь имеет полноразмерную длину, и ее 5′-конец ковалентно связан с белком. Позитивная цепь имеет меньшую длину и олигонуклеотидную последовательность (кэп-структуру на 5′-конце). Таким образом, вирионная ДНК имеет односпиральный участок (пробел) фиксированной полярности, но различной длины. Кодирующая организация вирионной ДНК характеризуется высокой компактностью: каждый нуклеотид генома находится внутри кодирующей области и более половины последовательностей транслируется более чем с одной из четырех рамок считывания. Вирусная полимераза, играющая центральную роль в репликации генома, а также концевой белок негативной цепи ДНК кодируются Р геном. С-область генома кодирует структурный белок нуклеокапсида, а S-область — поверхностные гликопротеины. Одной из особенностей структуры ДНК ВГБ является наличие открытой рамки считывания X, продуктом считывания которой является комплекс регуляторных белков, необходимых для проявления инфекционности in vivo и модификации экспрессии гетерологичных и гомологичных генов, по крайней мере в культуре клеток.

Субгеномные транскрипты функционируют исключительно как мРНК для трансляции белков оболочки пре-Sl, npe-S2 и S (соответственно L, М и S белки) и X белка. Субвирусные частицы содержат преимущественно S белок и различное количество М белка, и следовые количества L белка. Частицы Дейна содержат относительно большое количество L белка. Соотношение субъединиц L к М к S выражалось примерно как 1:1:4. Вирусы гепатита млекопитающих почти идентичны по структуре вирионов и генома со езначительной ДНК-гомологией (около 60%). Вирусы гепатита В пекинских уток и лесных североамериканских сурков отличаются от других гепаднавирусов отсутствием гена X, и они кодируют только 2 белка оболочки L и S.

Читайте также:  Чем отличается вирусный и хронический гепатит с

HBsAg синтезируется в цитоплазме гепатоцита, где часть его используется для образования ВГВ, а оставшаяся большая часть секретируется в межклеточное пространство и поступает в кровь. Все три морфологические формы вируса содержат поверхностный S-антиген (HBsAg), представляющий собой сложный комплекс, в состав которого входит общая антигенная детерминанта «а» и четыре субгрупповые детерминанты: у, d, w и г. Причем в состав HBsAg конкретного вируса входит типоспецифическая детерминанта «а» и по одной из двух пар исключительно субтиповых детерминант d или у, w или г. Соответственно, имеются четыре субтипа HBsAg: adw, adr, ayw, ayr. В составе высокоочищенных частиц HBsAg обнаружено от семи до девяти полипептидов с молекулярной массой от 25 000 до 100 000 кД, которые связаны друг с другом межмолекулярными дисульфидными связями. Малый белок вирусной оболочки P24/GP27 является основным компонентом, кодируемым S-геном. Два других белка оболочки — большой (P39/GP42) и средний (P33/GP36) — являются продуктами соответственно преS1 и npe-S2 генов. На их долю приходится 10-20 и 5-15% белка HBsAg. Эти два белка обладают большей антигенной активностью, чем P24/GP27. Домен преS1 белка оболочки содержит участок прикрепления вируса к поверхности гепатоцита и вызывает образование ВН-антител. Строгая видовая специфичность вирусного и клеточного рецепторов обеспечивает вирусам гепатотропность и ограниченный круг хозяев.

В этой связи способность вируса гепатита В уток размножаться во многих органах, кроме печени (мозг, легкие, сердце, кишечник, желудок, почки, селезенка), оказалась более чем неожиданной. С помощью МАТ в области npe-S белков вируса гепатита В уток идентифицировано четыре нейтрализуемых и два ненейтрализуемых эпитопа. Эпитопы, вовлекаемые в нейтрализацию, были представлены областью из 7-9 аминокислотных остатков. Иммунодоминантный нейтрализуемый эпитоп картирован в средней части npe-S белка. Эти данные свидетельствуют, что некоторые области полипептида npe-S могут играть важную роль в иммуногенезе В-вирусных гепатитов. Имеется сообщение о случаях заболевания кроликов гепатитом, вызываемым ДНК-содержащим вирусом, который не передавался человеку.

Парадокс состоит в том, что естественная гепаднавирусная инфекция, сопровождавшаяся массовой продукцией высокоиммуногенных частиц, способных вызывать образование ВН-антител в инфицированном организме, не завершается быстрым выздоровлением. Данное явление, вероятно, обусловлено тем, что избыточное количество частиц, содержащих HBsAg, адсорбирует ВН-антитела и тем самым помогает вирусу ускользнуть от хозяинной зависимости. Однако образование антител ограничивает распространение вируса и в дальнейшем ведет к удалению циркулирующего вируса из организма.

Образование ВН-антител к белкам оболочки зависит от Т-лимфоцитов. У некоторых людей ВН-антитела к белкам оболочки вируса не образуются, и развивается персистентная инфекция. Антительный ответ на белки сердцевины ви-риона зависит и не зависит от Т-клеточного ответа. Ответ на HBcAg является первым серологическим доказательством иммунного ответа, который сохраняется годами или даже всю жизнь. Антитела к HBeAg часто сопровождает выздоровление от острого течения заболевания.

Для специфической профилактики гепатита В первоначально использовали плазму крови инфицированных пациентов. Сыворотку крови, содержащую ВГБ (107,5 ИД для шимпанзе), разводили 1:10 и нагревали при 98°С в течение 1 минуты. Вирус инактивировали формолгликолем или формалином и нагреванием. В 1981 г. в США лицензирована вакцина из высокоочищенных инактивированных формалином субвирусных частиц (HBsAg) с использованием в качестве адьюванта гидрата окиси алюминия (ГОА). HBs-антиген не содержал обнаруживаемых количеств нуклеиновой кислоты. С конца 80-х годов прошлого века Hepatovax-B в США заменена рекомбинантной дрожжевой вакциной — Recombivax-HB. HBs антиген не содержал ДНК дрожжей и содержал менее 2% белка дрожжей. Перед адсорбцией на ГОА антиген инактивировали формальдегидом. В отличие от вакцины из плазмы крови, вирусный антиген не был гликозилированным, но вызывал защитный эффект у вакцинированных людей. Трехкратное введение (0, 7 и 21 дни) вакцины Engerix с бустеризацией через 12 месяцев обеспечивает наступление иммунитета в течение трех недель продолжительностью 5 лет. Аналогичная вакцина лицензирована и используется во многих странах. Кроме дрожжей, для изготовления рекомбинантной вакцины используют линию клеток яичника китайского хомяка (СНО).

источник

Описание: Вирусы гепатита. Минск Вирусы. Морфология и физиология вирусов Вирусные заболевания возникли в глубокой древности однако вирусология как наука начала развиваться в конце XIX века.

Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

УО «МИНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ КОЛЛЕДЖ»

содержащие. Вирусы гепатита.»

Специальность – Лечебное дело

Подготовила преподаватель – Коледа В.Н.

Вирусные заболевания возникли в глубокой древности, однако вирусология как наука начала развиваться в конце XIX века.

В 1892г. русский ученый-ботаник Д.И. Ивановский, изучая мозаичную болезнь листьев табака, установил, что заболевание это вызывается мельчайшими микроорганизмами, которые проходят через мелкопористые бактериальные фильтры. Эти микроорганизмы получили название фильтрующихся вирусов. В дальнейшем было показано, что имеются и другие микроорганизмы, проходящие через бактериальные фильтры, поэтому фильтрующиеся вирусы стали называть просто вирусами.

Вопрос о происхождении вирусов является предметом многих исследований и дискуссий. Одни учение предполагают, что вирусы являются потомками неклеточных форм живых паразитических микроорганизмов. Другие считают, что вирусы возникли в результате регрессивной эволюции одноклеточных микроорганизмов. Третьи думают, что вирусы произошли из клеточных элементов, ставших автономными системами.

Большой вклад в изучение вирусов внесли вирусологи: М.А. Морозов, Н.Ф. Гамалея, Л.А. Зильбер, М.П. Чумаков, А.А. Смородинцев, В.М. Жданов и др.

Вирусы – это неклеточная форма существования живой материи. Они очень малы. По образному выражению В.М. Жданова «величину их по отношению к величине средних бактерий можно сравнить с величиной мыши по отношению к слону». Увидеть вирусы стало возможно только после изобретения электронного микроскопа.

В настоящее время для изучения вирусов используют много методов: химические, физические, молекулярно-биологические, иммунобиологические и генетические.

Все вирусы подразделяются на поражающие человека, животных, насекомых, бактерии и растения.

У вирусов наблюдается большое разнообразие форм и биологических свойств, однако все они имеют общие черты строения. Зрелые частицы вирусов называют вирионами.

В отличие от других микроорганизмов, содержащих одновременно ДНК и РНК, вирион содержит только одну из нуклеиновых кислот – либо ДНК, либо РНК.

Нуклеиновая кислота вирусов может быть однонитчатой и двунитчатой. Почти все вирусы, содержащие РНК, имеют в своем геноме однонитчатую РНК, а содержащие ДНК – двунитчатую ДНК. В соответствии с двумя типами генетического вещества вирусы подразделяют на РНК- и ДНК-содержащие. К ДНК-содержащим относятся 6 семейств, РНК-содержащим – 11 семейств.

2-ух нитчатая ДНК, отсутствие внешней оболочки

Вирус помиломы, полиномы и бородавок человека

1-нитчатая ДНК, отсутствие внешней оболочки

2-ух нитчатая ДНК, наличие внешней оболочки

Вирус простого герпеса, циталомеголии, ветряной оспы

Вирус натуральной оспы, осповакцины

+однонитевая РНК, отсутствие внешней оболочки

Вирус полиомиелита, коксаки, ЕСНО, вирус гепатита А

Вирус гастроэнтерита детей

2-ух нитевая РНК, отсутствие внешней оболочки

Реовирусы, ротовирусы, орбивирусы

наличие обратной транскриптазы

ВИЧ, вирусы Т-лейкоза, онковирусы

+однонитевая РНК, наличие внешней оболочки

Вирус омской гемморагической лихорадки, краснухи

Вирус клещевого энцефалита, лихорадки Денге, желтой лихорадки

Вирус Буньямвера, крымской гемморагической лихорадки

Вирусы лимфоцитарного хормоменингита, болезни Лассо

Вирус бешенства, везикулярного стоматита

2-ух нитевая РНК, наличие внешней оболочки

Вирус парагриппа, паратита, кори, РСВ

Структура вириона. В центре вириона находится нуклеиновая кислота, которая окружена капсидом. Капсид состоит из белковых субъединиц, называемых капсомерами. Зрелый вирус по химической структуре является нуклеокапсидом. Количество капсомер и способ их укладки строго постоянны для каждого вида вируса. Капсомеры могут быть уложены в виде многогранника с равномерными симметрическими гранями – кубоидальная форма (аденовирус). Укладка в виде спиралей характерно для вирусов гриппа. Может быть тип симметрии, при котором нуклеиновая кислота имеет вид пружины, вокруг которой уложены капсомеры, в этом случае вирус имеет палочковидную форму – вирус, вызывающий болезнь листьев табака.

Сложный тип симметрии имеет фаг: головка – кубоидальной, а отросток – палочковидной формы.

Таким образом, в зависимости от способа укадки вирусы подразделяют на кубоидальную, сферическую, палочковидную и сперматозоидную формы.

Некоторые вирусы, обладающие более сложной структурой, имеют оболчку, которая называется пеплос. Она образуется при выходе вируса из клетки хозяина. Вирусный капсид при этом обволакивается внутренней поверхностью цитоплазматической мембраны клетки хозяина и образуется один или несколько слоев оболочки суперкапсид. Такую оболочку имеют только некоторые вирусы, например, вирусы бешенства, герпеса. Эта оболочка содержит фосфолипиды, разрушающиеся под воздействием эфира. Таким образом, воздействуя эфиром, можно отличить вирус, имеющий пеплос, от вируса с «голым капсидом».

У некоторых вирусов из внешнего липидного слоя оболочки выступают капсомеры в виде шипов (эти шипы тупые). Такие вирусы называются пепломерами (вирус гриппа).

Нуклеиновая кислота вируса является носителем наследственных свойств, а капсид и внешняя оболочка несут защитные функции, как бы способствуют проникновению вируса в клетку.

Размер вирусов. Измеряются вирусы в наномерах. Величинв их колеблется в широком диапазоне от 15-20 до 350-400 нм.

  1. Фильтрование через бактериальные фильтры с известной величиной спор
  2. Ультрацентрифугирование – крупные вирусы осаждаются быстрее
  3. Фотографирование вирусов в электронном микроскопе

Химический состав вирусов. Количество и содержание ДНК и РНК вирусов неодинаковы. У ДНК молекулярная масса колеблется от 1•10 6 до 1,6•10 8 , а у РНК – от 2•10 6 до 9,0•10 6 .

Белки у вирионов обнаружены в незначительном числе. Они состоят из 16-20 аминокислот. Кроме капсидных белков, имеются еще внутренние белки, связанные с нуклеиновой кислотой. Белки обуславливают антигенные свойства вирусов, а также в силу плотной укладки полипептидных цепей ограждают вирус от действия ферментов клетки хозяина.

Липиды и углеводы обнаружены во внешней оболочке сложных вирионов. Источником липидов и углеводов является оболочка клетки хозяина. Полисахариды, входящие в состав некоторых вирусов, обусловливают способность их вызывать агглютинацию эритроцитов.

Ферменты вирусов. Вирусы не имеют собственного метаболизма, поэтому они не нуждаются в ферментах обмена веществ. Однако у некоторых вирусов выявлено наличие ферментов, способствующих проникновению их в клетку хозяина.

Выявление вирусных антигенов. Вирусные антигены в инфицированных клетках хозяина можно обнаружить с помощью метода иммунофлюоресценции. Препараты, содержащие клетки, инфицированные вирусами, обрабатывают специфическими иммунными люминесцирующими сыворотками. При просмотре частиц наблюдается характерное свечение. Вид вируса определяют по соответствию специфической люминесцирующей сыворотки, вызвавшей свечение.

Внедрение вируса в клетку, взаимодействие его с клеткой хозяина и репродукция (размножение) слагаются из ряда последовательных стадий.

Стадия 1. Начинается с процесса адсорбции за счет рецепторов вириона и клетки. У сложных вирионов рецепторы располагаются на поверхности оболочки в виде шиповидных выростов, у простых вирионов – на поверхности капсида.

Стадия 2. Проникновение вируса в клетку хозяина протекает по-разному у разных вирусов. Например, некоторые фаги протыкают оболочку своим отростком и впрыскивают нуклеиновую кислоту в клетку хозяина. Другие вирусы попадают в клетку путем втягивания вирусной частицы с помощью вакуоли, т.е. на месте внедрения в оболочке клетки образуется углубление, затем края ее смыкаются и вирус оказывается в клетке. Такое втягивание называется виропексис.

Стадия 3. «раздевание вируса» (дезинтеграция). Для своего воспроизведения вирусная нуклеиновая кислота освобождается от защищающих ее белковых покровов. Процесс раздевания может начаться во время адсорбции, а может произойти тогда, когда вирус находится уже внутри клетки.

Стадия 4. На этой стадии происходит репликация (воспроизведение) нуклеиновых кислот и синтез вирусных белков. Эта стадия происходит при участии ДНК или РНК клетки хозяина.

Стадия 5. Сборка вириона. Этот процесс обеспечивается самосборкой белковых частиц вокруг вирусной нуклеиновой кислоты. Синтез белка может начаться непосредственно после синтеза вирусной нуклеиновой кислоты либо после интервала в несколько минут или несколько часов. У одних вирусов самосборка происходит в цитоплазме. У других в ядре клетки хозяина. Образование внешней оболочки всегда происходит в цитоплазме.

Стадия 6. Выход вириона из клетки хозяина происходит путем просачивания вируса через оболочку клетки либо через отверстие, образовавшееся в клетке хозяина.

Типы взаимодействия вируса и клетки. Первый тип – продуктивная инфекция – характеризуется образованием новых вирионов в клетке хозяинаю

Второй тип – абортивная инфекция заключается в том, что обрывается репликация нуклеиновой кислоты.

Третий тип – характеризуется встраиванием вирусной нуклеиновой кислоты в ДНК клетки хозяина; возникает форма сосуществования вируса и клетки хозяина (вирогения). В этом случае обеспечивается синхронность репликации вирусной и клеточной ДНК. У фагов это называется лизогения.

Микроскопическое исследование. При отдельных вирусных инфекциях в цитоплазме или ядрах клеток организма хозяина наблюдаются специфические внутриклеточные тельца – включения, имеющие диагностическое значение. Размеры вирусных частиц и телец-включений удается искусственно увеличить специальными методами обработки препаратов с протравой и импрегнацией и наблюдать при иммерсионной микроскопии. Более мелкие вирионы, лежащие за пределами видимости оптического микроскопа, обнаруживаются только при электронной микроскопии. Существуют разные точки зрения в отношении внутриклеточных включений. Они авторы считают, что они представляют собой скопление вирусов. Другие считают, что они возникают в результате реакции клетки на внедрение вирусов.

Генетика вирусов. Модификация у вирусов обусловливается особенностями клетки хозяина, в которой происходит репродукция вируса. Модифицированные вирусы приобретают способность заражать клетки, аналогичные тем, в которых они модифицировались. У разных вирусов модификация по-разному проявляется.

Мутация – у вирусов возникает под влиянием тех же мутагенов, которые вызывают мутация у бактерий. Возникает мутация во время репликации нуклеиновых кислот. Мутации затрагивают различные свойства вирусов, например чувствительность к температуре и др.

Генетическая рекомбинация у вирусов может возникнуть в результате одновременного заражения клетки хозяина двумя вирусами, при этом может произойти обмен отдельными генами между двумя вирусами и образуются рекомбинанты, содержащие гены двух родителей.

Генетическая реактивация генов иногда происходит при скрещивании инактивированного вируса с полноценным, что приводит к спасению инактивированного вируса.

Спонтанная и направленная генетика вирусов имеет большое значение в развитии инфекционного процесса.

Устойчивость к факторам окружающей среды. Большинство вирусов инактивируется при действии высоких температур. Однако имеются исключения, например вирус гепатита термоустойчив.

К низким температурам вирусы не чувствительны. Ультрафиолетовые солнечные лучи оказывают инактивирующее действие на вирусы. Рассеянный солнечный свет действует на них менее активно. Вирусы устойчивы к глицерину, что дает возможность длительно сохранять их в глицерине. Они устойчивы к антибиотикам.

Кислоты, щелочи, дезинфицирующие вещества инактивируют вирусы. Однако некоторые вирусы, инактивированные формалином, сохраняют иммуногенные свойства, что позволяет использовать формалин для получения вакцин.

Восприимчивость животных. Круг восприимчивых животных для некоторых вирусов очень широк, например, к вирусам бешенства чувствительны сногие животные. Некоторые вирусы поражают только один вид животного, например, вирус чумы собак поражает только собак. Имеются вирусы, к которвм животные не чувствительны – вирус кори.

Органотропность вирусов. Вирусы обладают способностью поражать определенные органы, ткани и системы. Например, вирус бешенства поражает нервную систему.

Выделение вирусов в окружающую среду. Из больного организма вирусы могут выделиться с калом, например вирус полиомиелита, вирус бешенства выделяется со слюной.

Основные пути передачи вирусов. Воздушно-капельный, пищевой, контактно-бытовой, трансмиссивный.

Противовирусный иммунитет. Организм человека обладает врожденной устойчивостью к некоторым вирусам. Например, человек не чувствителен к вирусу чумы собак.

Противовирусный иммунитет обусловливается как клеточными, так и гуморальными факторами защиты, неспецифическими и специфическими.

Неспецифические факторы. Мощным ингибитором репродукции вирусов является белковое вещество – интерферон. В здоровом организме он содержится в незначительном количестве, а вирусы способствуют продукции интерферона и количество его значительно увеличивается. Он неспецифичен, так как блокирует репродукцию разных вирусов. Однако он обладает тканевой специфичностью, т.е. клетки разных тканей образуют неодинаковый интерферон. Считают, что механизм действия его заключается в том, что он препятствует синтезу белка в клетке хозяина и этим прекращает репродукция вируса.

К специфическим факторам противирусного иммунитета относятся вируснейтрализующие антитела, гемагглютинирующие и преципитирующие.

Основные методы исследования вирусов.

  1. Реакция гемагглютинации, реакция задержки гемагглютинации, реакция непрямой гемагглютинации. Реакция связывание комплемента
  2. Реакция нейтрализации вирусов в культуре тканей
  3. Метод иммунофлюоресценции
  4. Гистологический метод – выявление включений
  5. Биологический метод
  1. Аденовирусы – вызывают лихорадочные заболевания с поражением дыхательных путей, глаз, кишечного тракта, инвагинацию кишечника у новорожденных с развитием непроходимости (поражаются аденоиды и миндалины), возникают катары ВДП, контагиозный насморк, конъюнктивиты, гастроэнтериты, может быть пленчатый конъюнктивит, лимфоиденопатия (отек ее и гиперплазия). Вирус проникает в кровь, развиваются острые геморрагические циститы у детей.
  2. Поксвирусы – вирус натуральной оспы.

Это древнее заболевание (около 3000 лет до н.э.).

1892 – Гварниери – шаровидыне и серповидные включения.

1906 – Пашен обнаружил оспенные карпускулы (серебрение по Морозову) – тельца Пашена-Морозова

Морфология. Крупной кубоидальной формы (300-350 нм). Снаружи липопротеидная оболочка, под ней вироплазма, в ней нуклеокапсид. ДНК-двухнитчатая. В нуклеокапсиде есть некоторые ферменты.

  1. Герпесвирусы – а) простого герпеса – зуд, жжение, гиперемия и отек, потом пузырьки. Чаще на границе кожи и слизистой (губы. Нос, пол языком, щеки, половые органы). Иногда температура, головная боль.

б) вирус ветряной оспы – заболевание протекает остро, с повышением температуры, озноб, сыпь и зуд по всему телу, в том числе зев и рот, экзантемы на коже. Сыпь появляется в несколько приемов, поэтому подсыхание пустул идет неравномерно. Везикулы однокамерные (натуральная оспа — многокамерные). Рубцы остаются очень редко.

в) вирус опоясывающего лишая – появляются высыпания по ходу межреберных нервов в виде пузырьков, заполненных прозрачной жидкостью. Они могут сливаться в одну сплошную ленту. Это сопровождается зудом, жжением, невралгическими болями, иногда температурой. Болеют взрослые, редко дети.

  1. Паповавирусы – вызывают доброкачественные и злокачественные заболевания у животных. 30 видов опухолей и лейкозов, бородавки. Патовавирусы получии название по первым слогам двух болезней (папилома и полиома) и вакуолизирующего вируса SV -40
  2. Гепадновирусы (воспаление) – включает вирус гепатита В.

Вирусные гепатиты относятся к категории наиболее распространенных инфекционных заболеваний, которые по своей медицинской значимости и размеру социально-экономического ущерба занимают одно из ведущих мест в инфекционной патологии России и других стран.

Эти системные инфекционные заболевания характеризуются преимущественным поражением клеток печени и развивающимся острым воспалением, в результате чего нарушается функция этого жизненно важного органа. Независимо от типа вируса, вызвавшего гепатит, в печени обнаруживаются идентичные гистологические изменения.

Вирусные гепатиты полиэтиологичны. Поражение печени могут вызвать различные вирусы. Для одних (вирус Эпстейна-Барра, цитомегаловирус, вирусы герпеса, краснухи и ветряной оспы) печень – необязательный орган-мишень, поражение которого идет наряду с другими органами, для других – обязательный и основной. Именно эти вирусы и называют вирусами гепатитов. В настоящее время известно 7 таких вирусов, которые принято обозначать как вирусы гепатитов А, В, С, D , E , F , G . В зависимости от основных путей заражения выделяют энтеральные (А и Е) и парантеральные (В, С, D ) вирусные гепатиты.

Клинические формы вирусных гепатитов различны. По тяжести течения это легкие, среднетяжелые, тяжелые и злокачественные (гепатодистофия) формы, по длительности течения – острые (до 3 месяцев), затяжные (от 3 до 6 месяцев) и хронические (более 6 месяцев) формы. Помимо типичных важное эпидемиологическое значение имеют атипичные, безжелтушные, стертые и субклинические формы вирусных гепатитов, частота которых достаточно велика.

Гепатит А (прежнее название – эпидемический гепатит, болезнь Боткина). Его возбудитель – вирус гепатита А, обозначаемый как HAV ( Hepatitis Avirus ), — по своим биологическим характеристикам относится к семейству Picornavipidae (пикорновирусов), роду Е nterovirus . Это РНК-содержащий вирус с РНК, представленной «плюс-нитью». Диаметр нуклеокапсида 27-28 нм, тип симметрии кубический. Вирус гепатита А обладает одним вирусоспецифическим антигеном белковой природы, связанным с 4 капсидными белками. Суперкапсидной оболочки не имеет. Отличается от других энтеровирусов высокой термостабильностью (до 60о С), гепатотропизмом, медленным и нецитолитическим циклом репродукции.

HAV не размножается в куриных эмбрионах и организме лабораторных животных. В отличие от других энтеровирусов плохо адаптируется к культурам тканей.

Источником инфекции являются больные, в основном, с бессимптомной формой инфекции. Вирус выделяется с фекалиями больных в течение последней недели инкубационного периода и в преджелтушный период. В это время больные наиболее опасны для окружающих.

Вирус обладает высокой инфекционностью и распространен повсеместно, но особенно велик риск заражения в странах с жарким климатом, с дефицитом воды, плохой системой канализации и водоснабжения, неудовлетворительным состоянием окружающей среды и низким уровнем гигиены населения. Отмечается сезонность заболевания с пиком, приходящимся на август – сентябрь. Наиболее крупная из когда-либо зарегистрированных вспышек гепатита А – около 300 тысяч заболевших – имела место в 1988 году в Шанхае и была связана с употреблением сырых моллюсков.

В организм человека вирусы гепатита А попадают через рот с водой и пищей, не подвергающейся термической обработке (молоко, соки, салаты и др.). первичная репродукция происходит в эпителиальных клетках слизистой оболочки носоглотки, тонкого кишечника и регионарных лимфатических узлов. Далее вирус проникает в кровь, где обнаруживается в конце инкубационного периода и в первые дни заболевания. Через портальную вену вирус попадает в печень, где в цитоплазме гепатоцитов произсходит его вторичная репродукция. Поражение гепатоцитов связано не с прямым цитопатическим действием вируса, а с иммунопатологическими механизмами. Оно приводит к развитию желтухи и сопровождается повышением уровня трансаминаз в сыворотке крови. Через билиарный тракт возбудитель с желчью вновь поступает в кишечник и выделяется с фекалиями во внешнюю среду. Высокая концентрация вируса в фекалиях отмечается в конце инкубационного периода и в первые дни заболевания (до развития желтухи).

Читайте также:  Стандарт медицинской помощи больным хроническим вирусным гепатитом

Инкубационный период гепатита А длится от 2 до 6 недель. Продромальный период (4-5 дней) с катаральными явлениями, слабостью, адинамией, болями в мышцах напоминает гриппоподобные заболевания. Болезнь начинается остро с подъема температуры. Через 3-5 дней температура снижается и развиваются симптомы, характерные для желудочно-кишечных заболеваний, к ним присоединяются признаки поражения печени (моча становиться темной, а кал обесцвечивается, появляется желтушное окрашивание склер, слизистых оболочек и кожных покровов). Возможно развитие и безжелтушных форм, обычно у детей до 5 лет. Такие больные наиболее опасны в эпидемиологическом плане. У взрослых ее частота составляет 20-50%. Прогноз при гепатите А, как правило, благоприятный, переходов в хронические формы не бывает, но иногда встречаются фульминантные (скоротечные) формы заболевания с летальным исходом.

После перенесенного гепатита А формируется пожизненный иммунитет, связанный с иммуноглобулинами класса G . В период болезни с момента появления клинических симптомов в сыворотке больных первыми появляются IgM и сохраняются в течение 4-6 месяцев, после чего их сменяют IgG . Таким образом, обнаружение IgM – надежный диагностический признак острой или свежеперенесенной инфекции.

Помимо гуморального, возникает и местный иммунитет в кишечнике.

Поскольку вирус гепатита А в искусственных условиях практически не культивируется, то для микробиологической диагностики используют иммунологические методы.

Иммуноиндикация – ранний, экспресс-метод диагностики.

Материалом для исследования являются фекалии больных, в которых можно обнаружить вирусные частицы с помощью иммуноэлектронной микроскопии (ИЭМ) и вирусный антиген с помощью ИФА и РИА. При ИЭМ в качестве иммунной применяют сыворотку реконвалесцентов, меченную коллоидным золотом. Вирус и его антиген можно обнаружить в конце инкубационного, в продромальный и в начале желтушного периода.

Серологическая диагностика гепатита А основана на определении нарастания титра антител классов IgG и IgM в парных сыворотках больного. Для целей серодиагностики используют ИФА и РИА.

Основным диагностическим признаком текущей или свежеперенесенной инфекции являются антитела IgM . Их максимальное количество регистрируется на 3-6 неделе заболевания. Антитела класса IgG обнаруживаются и после выздоровления больного, сохраняются в течение длительного времени и свидетельствуют о перенесенном заболевании, т.е. могут служить показателем иммунитета к гепатиту А.

Активная специфическая профилактика гепатита А проводится с помощью убитой вакцины Havrix (инактивированной формальдегидом). Вакцинация проводится по эпидпоказаниям в группах риска (людям, которые много путешествуют, работникам медико-санитарных служб, сотрудникам детских садов и яслей, работникам учреждений общественного питания, военнослужащим, а также персоналу, обслуживающему канализационные системы).

Возможна и пассивная иммунопрофилактика контактным лицам с помощью донорского иммуноглобулина, полученного из сывороток крови переболевших людей.

Гепатит Е. Возбудитель гепатита Е, обозначаемый как HEV ( Hepatitis Evirus ), относится к семейству Caliciviridae , роду Hepevirus . Он также представляет собой РНК-содержащий вирус, не имеющий суперкапсидной оболочки. Диаметр его нуклеокапсида 32-34 нм. По последним данным, вирус, возможно, является прототипом для нового семейства вместе с вирусом краснухи.

Заражение вирусом гепатита Е происходит через рот, в основном через воду. По сравнению с гепатитом А инфицирующая доза должна быть выше.

Некоторые авторы рассматривают этот вирусный гепатит как зооантропонозную инфекцию, не исключая грызунов как возможный источник инфекции.

Инкубационный период гепатита Е составляет примерно 40 дней. Клинически он похож на гепатит А, но обычно протекает легче. Перехода в хронические формы не дает. Особенностью гепатита Е является частое развитие холестаза и высокая (до 20%) смертность среди беременных женщин во второй половине беременности.

Гепатиту Е свойственны эпидемическая вспышки, охватывающие десятки тысяч человек. Специфика эпидемий гепатита Е характеризуется взрывоопасным развитием, низкой семейной заболеваемостью, увеличением заболеваемости в июле с пиком в октябре, преимущественной заболеваемостью лиц 15-40 лет (обычно это лица, вовлеченные в работу на хлопковых плантациях), неравномерным территориальным распределением. Гиперэндемичные районы расположены в Индии, Неаполе, Пакистане, Бангладеш, Бирме, а эндемичные районы в бывшем СССР сосредоточены в районах с развитым хлопководством, с выраженным дефицитом питьевой воды, отсутствием централизованной канализации и водоснабжения.

Диагноз подтверждают методы микробиологической диагностики. Основным методом микробиологической диагностики является серологическое исследование. С этой целью проводится ИФА по определению антител к атигену вируса гепатита Е в разведенных парных сывороток больного. На ранних этапах болезни путем иммуноэлектронной микроскопии (ИЭМ) образцов фекалий, можно реализовать метод иммуноиндикации.

Для специфической профилактики среди беременных используется специфический иммуглобулин. Выпускаются цельновирионные и разрабатываются рекомбинантные и живые вакцины.

Гепатит В (прежнее название – сывороточный гепатит). Его возбудитель – вирус гепатита В, обозначаемый как HBV ( Hepatitis Bvirus ), — относится к семейству Hepadnaviridae (гепаднавирусов), роду Orthohepadnavirus . Нуклеиновая кислота этого ДНК-содержащего вируса представлена кольцевой двунитевой молекулой ДНК, причем одна нить разомкнута, дефектна. Длина ее непостоянна и может составлять от 15 до 60% длинной цепи. Кольцевая молекула может принимать линейную форму. Геном связан с ферментами: протеинкиназой, ДНК-зависимой ДНК-полимеразой, которая достраивает короткую цепь ДНК до полной длины при попадании вируса в клетку, и обратной транскриптазой, которая обнаруживается в инфицированных HBV клетках печени при раковом перерождении.

Вирон HBV имеет диаметр 42-52 нм, а его нуклеокапсид – 27 нм. Тип симметрии нуклеокапсида – кубический.

Вирус гепатита В имеет суперкапсидную оболочку, представленную липидами и полипептидами. Белки суперкапсидной оболочки могут отличаться по антигенной специфичности, а полипептид, содержащийсыя в этой оболочке, обладает группоспецифичностью.

Из всех вирусов гепатита человека этот имеет наиболее сложное антигенное строение:

  • Поверхностный НВ s -АГ супекапсидной оболочки – основной антигенный маркер НВ V , ранее называемый австралийским антигеном. Он состоит из двух полипептидных субъединиц. Первая ответственна за адсорбцию вируса на клетке и способн6а связываться с полиальбуминами сыворотки больного, что приводит к появлению в оболочкевмруса таких же белков, как у человека. Это обусловливает возникновение аутоимунных конфликтов и переход в хронические формы инфекции. Вторая фракция НВ s -АГ является сильным иммуногеном и используется для создания генно-инженерных вакцин. НВ s -АГ обнаруживается в крови больных и носителей;
  • Глубокий НВс-АГ связан с белками капсидной оболочки вируса и обычно в кровь не поступает;
  • Нве-АГ – особый антиген вируса, который отщепляется при прохождении через мембрану гепатоцитов. Егго обнаружение в крови больного свидетельствует об активном размножении вируса. Ассоциирован с ДНК-полимеразой вируса;
  • НВх-АГ мало изучен, но есть основание пологать, что он связан с онкогенным действием вируса гепатита В и развитием первичной гепатоклеточной карциномы.

Вирус гепатита В не размножается в культурных тканей, в куриных эмбрионах, в организме лабораторных животных. Он патогенен для человекообразных обезьян.

Источник инфекции – больной и вирусоноситель.

Эпидемиология гепатита В характеризуется отсутствием сензонности заболевания, высокой частотой вирусоносительства как основного резервуара вируса в природе, наличием групп лиц с высоким риском заболеваемости (персонал медицинских учреждений, лица, отбывающие на длительный срок в страны Африки, Южной Америки, среднего и Дальнего Востока, наркоманы, лица с заболеваниями крови, пациенты, подвергавшиеся гемотрансфузии, оперативным вмешательствам).

Для вирусного гепатита В характерны следующие пути передачи: парентеральный, половой, вертикальный (внутриутробно от матери к ребенку), но необходимо отметить, что вирус гепатита В может также выделяться с биологическими жидкостями – слюной (при поцелуе, укусе), потом, слезами и грудным молоком.

Инкубационный период гепатита В колеблется от 3 до 6 месяцев. Заболевание характеризуется постепенным началом. Клинические проявления вызваны иммунообусловленным повреждением печеночных клеток связаны не с цитопатическим действием вируса, а сцитоттоксическим действием Т-киллеров, узнающих и атакующих мембраны инфицированных клеток, на которых содержатся антигены вируса.

В пораженных клетках возможны два пути репродукции вируса: репликация и интеграция. При репликации ДНК-полимераза вируса достраивает дефектную нить ДНК, обеспечивая процесс ее удвоения. На матрице ДНК образуются и-РНК, которые идут на рибосомы и обеспечивают синтез всех вирусных компонентов. Геномы вируса и клетки автономны, и возможна полная элиминация вируса из организма. При интеграции происходит встраивание генома вируса в клеточный геном, после чего генетическая информация может реаизоваться полностью или частично. В частности, активно синтезируется НВ s -АГ. Элиминация вируса невозможна.

Гепатит В протекает белее тяжело, чем гепатит а. У 10% больных он переходит в хронические формы. Эти люди длительно, иногда годами, являются носителями НВ s -АГ и основными источниками инфекции. На фоне хронических форм возможно последующее развитие цирроза и первичного рака печени.

Микробиологическая диагностика гепатита В основана на выявлении специфических антигенов и антител в крови обследуемого с использованием иммуноферментного анализа.

Определяющим является обнаружение НВ s -АГ, который выявляется в сыворотке больных через 3-5 недель с момента инфицирования и сохраняется в течение всей болезни. Его наличие после 6 месяцев – показатель хронического заболевания, а в более поздние сроки на фоне клинического здоровья – носительства. При полном выздоровлении НВ s -АГ исчезает.

При острой инфекции в сыворотке одновременно обнаруживаются НВ s — и НВе-антигены, что обусловлено активной репродукцией вируса.

По наличию антител к тем или иным антигенам вируса можно судить о периоде заболевания. В разные сроки болезни обнаруживают антитела к НВс-, Нве-, НВ s -антигенам классов иммуноглобулинов М и G .

Специфическая профилактика проводится генноинженерной вакциной Энджерикс В, иммунитет после вакцинации сохраняется в течение 3-5 лет. Вакцинации подлежат дети, а также лица группы риска – медицинские работники (хирурги, акушеры, врачи-лаборанты).

Гепатит D . Возбудителем гепатита D является дельта-вирус ( Hepatitis delta virus ), который в настоящее время не классифицирован. Этот вирус рассматривают как сателлит вируса гепатита В. Он представляет собой дефектный РНК-вирус размером 35-37 нм. Вирион имеет однонитевую РНК, покрытую внешней оболочкой. Антигены вируса – это внутренние белки оболочки ( D -антиген) и НВ s -АГ вируса гепатита В, который также содержится в оболочке вируса. Этот вирус не способен к самостоятельной репликацмм в организме хозяина, так как синтез белков его внешней оболочки обеспечивает вирус гепатита В. Таким образом, гепатит D развивается только при одновременном инфицировании вирусом гепатита В и дельта-вирусом и может протекать в виде суперинфекции или коинфекции.

Вирус гепатита как высокопатогенный гепатотропный агент обладает прямым цитопатическим действием на клетки печени. Присоединение дельта-инфекции у больных гепатитом В ведет к развитию тяжелых форм патологического процесса и переходу острого гепатита в хронический.

Передается вирус гепатита D парентеральным путем.

Микробиологическая диагностика гепатита D основана на обнаружении антител к D -АГ дельта-вируса в сыворотке крови больного с помощью метода иммуноферментного анализа.

Первый маркер инфекции – вирусоспецифические антитела класса IgM – появляются на 10-15-й день болезни. Через 4-11 недель их сменяют антитела класса IgG , постоянно циркулирующие у инфицированных лиц.

В микробиологической диагностике гепатита D также используют ПЦР или метод молекулярой гибридизации для выявления вирусной нуклеиновой кислоты.

Средства специфической иммунопрофилактики не разработаны.

Гепатит С . Возбудителем гепатита С является вирус, относящийся к семейству Flaviviridae , роду Hepavirus . Его вирон сферической формы, диаметром 35-65 нм, содержит однонитевую «плюс-нить» РНК, геномные ферменты, участвующие в репликации вируса, и суперкапсидную оболочку. В составе вирусной частицы присутствуют ядерный – капсидный (С) и поверхностный – суперкапсидный (Е1, Е2) гликопротеиновые антигены.

Гепатит С распространен повсеместно. Основной путь заражения – парентеральный. Для заражения необходима большая инфицирующая доза, чем при гепатите В. инкубационный период от 2 до 26 недель.

Для гепатита С характерны высокая частота безжелтушных форм (до 75%) и более легкое течение, чем для гепатита В. но в 20-50% случаев заболевание переходит в хроническое с последующим развитием цирроза печени и первичной гепатокарциномы. Редко встречаются молниеносные (фульминантные) формы гепатита.

Основные методы микробиологической диагностики – иммуноиндикация и серологическое исследование (ИФА). Выявление антигенов вируса возможно в ранние сроки болезни, а антител к вирусу – в сравнительно поздние сроки заболевания.

Специфическая профилактика гепатита С не разработана.

Пандемии с XII в. В XIX в. было 8 пандемий, особенно тяжелая в 1889-90гг. В XX в. – 4 пандемии, в 1918г. «испанка» унесла 20 млн. человек. Во время пандемий в нашем столетии переболели 1,5 – 2 млрд. человек. Между пандемиями возникают эпидемии, когда переболевают 20-25%, в лучшем случае 10-12%.

Этиология. Вирус был выделен в 1933 году (Смит, Эндрюс, Лейдлоу), в 1940 был открыт II вид, в 1947 – III и обозначаются А, В, С.

Иммунитет развивается определенному виду вируса, что препятствует распространению вируса. Но тут же распространяются другие виды вирусов.

Вирус гриппа В обладает меньшей изменчивостью. Вирус С стабилен. Вирус А имеет 2 АГ: гемагглютинин и нейраминидазу: Н (гемагглютинин) имеет 15 типов, N (нейраминидаза) – 10. По сочетанию этих АГ определяют подтип вируса, который меняется при разных эпидемиях. Вариабельность сочетания этих АГ определяет изменчивость вируса А. вирус типа В более устойчив.

В составе вируса гриппа А имеются 2 АГ: типоспецифический S -АГ (растворимый) и штаммоспецифический оболочечный V -АГ (вирусный), состоящий из гемагглютинина, нейраминидазы и углеводного компонента.

V -АГ изменчив. Каждые 2-3 года в структуре гемагглютинина и нейраминидазы вируса гриппа А происходят точечные мутационные изменения, приводящие к появлению штаммовых различий, а через 10-15 лет в результате антигенных сдвигов могут возникать новые их варианты, обусловленные генетической рекомбинацией между вирусом человека и вирусами гриппа животных, птиц.

Сочетание гемагглютинина и нейраминидазы привело к возникновению 4-х серотипов вируса гриппа А – HoNI , HINI , H 2 N 2, H 3 N 2. При этом всякий раз такие глубокие изменения антигенной структуры V -АГ у вируса гриппа А приводили к тяжелым эпидемиям гриппа.

Устойчивость. Устойчив особенно при низких температурах при – 70 о , при 65 о С погибает через 5-10 минут, при 50 о С утрачивает свои инфекционные свойства через несколько минут. В кислотной, щелочной среде, под действием эфира и дезинфицирующих растворов быстро погибает, чувствителен к действию УФ-лучей и ультразвука. В глицерине может сохраняться несколько месяцев. Чувствителен к высыханию.

Патогенез и клиника. Воздушно-еапельный механизм передачи. Входные ворота – слизистые оболочки дыхательных путей. Редко – воздушно-пылевой.

Оболочные АТ нейтрализуют вирус и заболевание не возникает. При снижении иммунитета вирус внедряется в клетки цилиндрического эпителия слизистой оболочки. Клетки гибнут, а вирус пораждает другие клетки. Поверхностный слой слизистой оболочки гибнет, а вирус проникает в кровь, таким образом создаются условия для вторичной инфекции. Катаральные являения при гриппе обусловленывторичной инфекцией, в том числе условно-патогенной. Инкубационный период – 12часов-3 дня – высокая температура, возникают осложнения.

Начинается заболевание с общих штаммов. Чаще всего наблюдается лихорадка, озноб, головная и мышечная боль, разбитость, глазные симптомы (светобоязнь, слезотечение, жжение и боль при движении глаз). Позже присоединятся респираторные проявления – кашель, насморк, фарингит. С 3-4 дня начинается выздоровление, но возможны тяжелые осложнения.

Источники инфекции – больной. Вирус выделяется и в инкубационный период. Наиболее заразен больной в первые 3 дня болезни. К 5-му дню вирус исчезает из организма, но может оставаться до 7 дней и более. Выделяют вирус и больные легкой формы, работающие, общающиеся со здоровыми, а также – носители. Такие формы заболевания определяются вирусологически и серологически. Носительство длится несколько дней, особенно много носителей при гриппе С.

Иммунитет. Формируется в основном за счет антигемагглютининов, которые обладают вируснейтрализирующими свойствами – препятствуют адсорбции вирусов на чувствительной клетке. В формировании иммунитета играют роль также антинейраминидазные АТ. Кроме того организм от вируса защищает интерферон и другие ингибиторы, находящиеся в сыворотке крови. Иммунитет развивается типо- и штаммоспецифический. Так как идет постоянная смена подтипов вируса А, а перекрестного иммунитета нет, то защитить организм от этой инфекции пока не удается, также сложно прогнозировать направление изменчивости.

По длительности: вирус А – 1-2 года, вирус В – 3-5 лет.

Вирус иммунодефицита человека (ВИЧ) относят к семейству Retroviridae , роду лентивирусов. Вирионы вируса имеют сферическую форму. В сердцевине вириона содержатся две копии однонитевой РНК, соединенные на одном из концов водородными связями. Геномные белки вируса – обратная транскриптаза и внутренние белки р7 и р9. У вируса 9 генов, 3 из них кодируют структурные компоненты вириона: gag – внутренние белки, pol – обратную транскриптазу, env – типоспецифические белки суперкапсидной оболочки. Большое значение имеют регуляторные гены, образующие сложную систему регуляции синтеза вирусных компонентов. Они играют роль в переходе от латентной ВИЧ-инфекции к ее манифестации. Капсидная оболочка состоит из простых белков р18 и р24. Тип симметрии нуклеокапсида кубический. Суперкапсидная оболочка вируса образована двойным липидным слоем с расположенными на нем белковыми шипами из двух субъединиц ( g р41 и g р120) и как конверт покрывает нуклеокапсид. Белки суперкапсидной оболочки – это сложные гликопротеины, выполняющие адресную и якорную функцию. Белки g р120 и g р41 являются и главными антигенными маркерами ВИЧ.

Антигенными свойствами обладают белки капсидной и суперкапсидной оболочек вируса, для которого характерна антигенная изменчивость, что сдерживает создание вакцины против ВИЧ-инфекции. Антигенная изменчивость вируса может наблюдаться доже в организме в ходе инфекции или носительства. В настоящее время различают два антигенных варианта ВИЧ1 и ВИЧ2. Первый распространен в Америке и Европе, а второй – в Западной и Центральной Африке.

Рецепторные белки ВИЧ g р120 и g р41 имеют тропизм к клеткам, несущим рецепторы CD 4. Это прежде всего Т-хелперы, а также клетки нейроглии, макрофаги, моноциты. Гибель Т-хелперов приводит к развитию иммунодефицита. Особый тип репродукции ВИЧ, включающий образование ДНК-транскрипта на матрице его РНК при участии обратной транскриптазы, и интеграция его в геном пораженной клетки, сложность регуляции функционирования вирусного генома ведут к длительному персистированию вируса в организме, обусловливая длительные инкубационный и латентнвый периоды болезни, ее обострения и прогрессирующее тяжелое течение.

В организме вирус находится в крови, проникает в слюну, сперму.

Источник, эпидемиология и патогенез ВИЧ-инфекции.

Различают следующие пути передачи инфекции: половой, парентеральный, трансплацентарный. Поэтому группы риска по заболеваемости ВИЧ-инфекцией в первую очередь составляют люди с заболеваниями крови, наркоманы, а также в силу профессиональной специфики врачи-лаборанты, хирурги, стоматологи. Прежде представление о ВИЧ-инфекции как о болезни прежде всего гомосексуалистов не соответствует действительности.

Проникая в организм с кровью, вирус в первую очередь атакует лимфоциты CD 4. Белки суперкапсидной оболочки вируса распознают эти рецепторы и взаимодействуют с ними. Инфицирование макрофагов происходит как самим вирусом, так и комплексами вирус-клетка.

После адсорбции, проникновения в клетку и депротеинизации вируса освобождается его РНК. За счет геномного фермента вируса обратной транскриптазы образуется ДНК-транскрипт, интегрирующий в клеточный геном. ДНК-провирус долгое время может существовать в неактивной форме. Клеточный ядерный фактор, активирующий транскрипцию клеточной ДНК, может активировать и транскрипцию ДНК-провируса. Это приводит к переходу от латентной формы инфекции к ее манифестации, хотя с момента инфицирования может пройти 10 лет и более.

Активная репродукция вирусов ведет к гибели поврежденных клеток и развитию клинических симптомов, прежде всего синдрома приобретенного иммунодефицита. Гибель Т-хелперов приводит к подавлению клеточного и гуморального иммунных ответов, а поражение макрофагов – к подавлению синтеза интерлейкина-1, снижению хемотаксиса и угнетению механизмов фагоцитоза. Инфицированные макрофаги становятся основным резервуаром вируса в организме, так как эти клетки не гибнут, а разносят вирус в различные органы и ткани, инфицируют новые Т-лимфоциты, взаимодействуют с ними в лимфоузлах.

ВИЧ-инфекция характеризуется многообразной патофизической и клинической картиной. Страдают не только органы иммунной системы, но и нервная, пищеварительная, дыхательная, сердечно-сосудистая системы. На фоне выраженного иммунодефицита развиваются вторичные бактериальные и рибковые инфекции, вызванные условно-патогенными микроорганизмами. Клиническим симптомом поздних стадий ВИЧ-инфекции является поражение ЦНС, развитие саркомы Капоши (гемангиома). Все симптомы развиваются постепенно и выраженность их индивидуальна.

Методы микробиологической диагностики ВИЧ-инфекции.

Диагностика ВИЧ-инфекции основана на выявлении антигенных маркеров ВИЧ: белков g р41, g р120, р18, р24, р7, р9. Для этого используют различные тест-системы для ИФА.

Высокой специфичностью обладают и методы генетического анализа с использованием вирусных нуклеиновых зондов и ПЦР.

Возможно выделение вирусов в культуре тканей из лимфоцитов с последующей идентификацией по ЦПД и в реакции вирусонейтрализации, но из-за сложности вирусологическое исследование мало употребительно: лишь в отдельных специализированных лабораториях.

В лабораторной диагностике также используются методы оценки иммунного статуса, выявляющие резкое угнетение клеток Т4 и уменьшение показателя Т4/Т8.

Для широкого обследования населения и отбора возможно инфицированных лиц применяют серологический метод диагностики – ИФА по обнаружению антител, но он не относится к методам ранней диагностики ВИЧ-инфекции.

Проблемы лечения и специфической профилактики ВИЧ-инфекции.

Для лечения ВИЧ-инфекции в настоящее время используют противовирусный препарат азидотимидин (ретровир), а также иммуностимуляторы и симптоматическую терапию, поскольку больные умирают от вторичных гнойных инфекций, вызываемых условно-патогенными бактериями и грибами, и от развития опухолей на фоне выраженного иммунодефицита.

Появляются сообщения и о новых активных препаратах, но на современном этапе медики констатируют, что их использование останавливает развитие выраженных клинических симптомов заболевания, но не освобождает клетки от провируса. Весьма перспективно создание средств, ингибирующих обратную транскриптазу.

В настоящее время ведутся исследования по созданию генно-инженерных, убитых и химических вакцин.

источник