Меню Рубрики

Возбудитель натуральной оспы таксономия

Семейство Poxviridae включает несколько родов, имеющих разнообразных хозяев. Патогенным для человека является вирус натуральной оспы.

Заболевание оспой известно с незапамятных времен (около 3000 лет до н. э.) и распространено оно было во всех странах мира.

Один из древних историков писал: «Никакой народ, никакая раса, ни звание, ни возраст, ни пол не щадились оспой. Все трепетало перед ней». Оспа страшна своей контагиозностью. В Германии в XVIII веке от оспы погибло 80 тыс. человек. От оспы умерли русский царь Петр II, австрийский император Иосиф, французский король Людовик XIV, английская королева Анна, знаменитая русская актриса Комиссаржевская и др.

Нам сейчас трудно представить себе ту сокрушительную силу, с которой орудовал вирус оспы. Но этот бич человечества был сломлен наукой. Прекратились эпидемии оспы.

И за последние несколько лет не было зарегистрировано ни одного случая оспы во всем мире.

Этиология оспы была установлена к концу XIX века. В 1892 г. Гварниери в гистологических срезах, сделанных и роговицы глаз кролика, зараженного оспенным материалом, обнаружил шаровидные и серповидные включения величиной от 3-4 до 10 мкм, окрашивающиеся по Романовскому — Гимзе в красный цвет. Эти включения были названы тельцами Гварниери. А в 1906 г. в содержимом оспенных пустул Пашен обнаружил оспенные корпускулы, в препаратах, обработанных методом серебрения по Морозову. Эти корпускулы были названы тельцами Пашена — Морозова.

Морфологическая структура. Вирус оспы крупный, размером 300-350 нм, кубоидальной формы. На ультрасрезах оспенных вирионов обнаружена липопротеидная оболочка, под ней вироплазма, в которой содержится нуклеокапсид. ДНК у вируса оспы — двунитчатая. Из нуклеокапсида вириона выделены некоторые ферменты.

Культивирование. Вирус натуральной оспы хорошо развивается в куриных эмбрионах на хорион-аллантоисной оболочке. Репродукция его характеризуется образованием на оболочке белых, плотных точечных бляшек с блестящей поверхностью, величиной около 1 мм.

Вирус можно также культивировать на первичных и перевиваемых клеточных культурах человека и животных. Здесь рост характеризуется цитопатическим действием (дегенерацией клеток через 48-72 ч).

Антигенная структура. У вируса оспы обнаружено несколько антигенов: растворимые (L-термолабильный и S-термостабильный), нуклеопротеидный NP-антиген. Вирусы оспы имеют общие антигены с вирусом оспенной вакцины и эритроцитами человека группы А и АВ.

Устойчивость к факторам окружающей среды. При температуре 100° С вирусы погибают моментально. Температура 60° С губит их через час. Низкие температуры и высушивание вирусы натуральной оспы переносят хорошо — в оспенных корочках сохраняются длительно. Дезинфицирующие растворы (30% хлорамин, лизол) инактивируют вирусы оспы через 30 мин. К фенолу и эфиру они более устойчивы, а в 50% глицерине вирусы оспы сохраняются месяцами.

Восприимчивость животных. К вирусу оспы чувствителен мелкий и крупный рогатый скот. В экспериментальных условиях легко заражаются обезьяны, морские свинки, кролики и др. Однако воспроизвести заболевание, сходное по клинике с болезнью человека, можно только у обезьян.

У новорожденных белых мышей вирус вызывает оспенный энцефалит.

Источники инфекции. Больные люди.

Пути передачи. Воздушно-капельный и воздушно-пылевой (вирус передается при кашле, разговоре, через посуду, а также через пылевые частицы, находящиеся на одежде).

Патогенез. Вирус оспы проникает через слизистую оболочку дыхательных путей и через кожные покровы. Проникнув в организм, вирусы локализуются в регионарных лимфатических узлах. Размножившись там, они попадают в кровь, обусловливая вирусемию. Вторичная репродукция (размножение) происходит в лимфоидной ткани и сопровождается клиническими проявлениями заболевания: высокой температурой, головной болью, потерей сознания и т. д. Обладая дермотропными свойствами, вирусы попадают в эпидермис. На коже и слизистых оболочках образуются папулы, везикулы и пустулы. Оспенные папулы характеризуются прозрачным содержимым и имеют вид жемчужин с перламутровым блеском. На месте появления пустул образуется некроз, после заживления которого остаются рубцы. Образование рубцов на слизистой глаз приводит к слепоте (в 25% случаев). Процент смертности при оспе велик, при геморрагической форме — 100%. При этой форме пустулы наполняются кровью — черная оспа.

Встречаются легкие формы оспы, когда заболевание протекает без температуры и сыпи.

Иммунитет. У переболевших людей иммунитет пожизненный. Обусловливается он вируснейтрализующими, гемагглютинирующимися и комплементсвязывающими антителами. Искусственная иммунизация с последующей ревакцинацией дает стойкий иммунитет. Считают, что интерферон также является фактором защиты.

Профилактика. Ранняя диагностика, изоляция, дезинфекция, предупреждение завоза оспы из других стран, карантин и т. д.

Специфическая профилактика. В борьбе с натуральной оспой большое значение имеет специфическая профилактика. За много лет до нашей эры на востоке существовали разные методы борьбы с оспой. В Индии, Иране — растертые корочки из пустул больных легкой формой втирали в кожу здоровых, а в Китае наносили на слизистые оболочки носа.

В 1796 г. английский врач Э. Дженнер после длительных наблюдений использовал содержимое пустул коровьей оспы для вакцинации людей. Отсюда название — вакцина (от лат. vacca — корова).

Вакциной, приготовленной таким методом, пользовались длительное время. Затем был разработан метод получения ововакцины (вирус накапливали в курином эмбрионе). Этот метод удобнее для изготовления и экономнее.

В настоящее время вакцину готовят из вируса, выращенного в культуре клеток.

В марте 1919 г. В. И. Лениным был подписан декрет об обязательном оспопрививании. После проведения массовой иммунизации оспа в СССР была ликвидирована.

В 1958 г. по инициативе СССР на XI Ассамблее ВОЗ было принято решение о ликвидации оспы во всем мире путем массовой вакцинации. В результате за последние годы не было зарегистрировано ни одного случая заболевания оспой в мире и в 1981 г. по рекомендации ВОЗ обязательная прививка против оспы была отменена.

Цель исследования: выявление возбудителя оспы. Работа с вирусом оспы проводится в строго режимных условиях (см. «Особо опасные инфекции»).

1. Содержимое папул, везикул, пустул.

2. Отделяемое слизистой оболочки носоглотки.

3. Кровь (с 5-го дня болезни) берут для выявления специфических антител.


Способы сбора материала

1. Метод иммунофлюоресценции (экспресс-диагностика) (см. главу 12).

2. Реакция РСК, РТГА и РНГА (см. главу 12).

3. Выделение вируса в куриных эмбрионах и культуре клеток Hela, Нер-2.

4. Обнаружение телец Гварниери в зараженных клетках.

5. Обнаружение телец Пашена в содержимом везикул (окраска по Морозову).

1. Какова величина и структура вириона оспы?

2. Каковы основные методы культивирования вируса оспы?

3. Патогенез натуральной оспы.

4. Иммунитет и специфическая профилактика? Кем и когда был подписан первый декрет об обязательной прививке против оспы?

5. Каковы основные методы диагностики оспы?

источник

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЯ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ЧИТИНСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

Кафедра микробиологии с вирусологией и иммунологией

тема: Поксвирусы – возбудители натуральной оспы.

обучения, курс 2, группа 151

1. Поксвирус – возбудитель натуральной оспы…….………………….………..6

1.3 Антигенная структура…………………………. ……………………. 7

2. Патогенность для животных………. ………………………………………. 8

3. Патогенез заболевания у человека…..………………………………………. 9

5. Лабораторная диагностика……………………. ………………. ………. 12

5.1 Прямые методы диагностики клинического материала………. ……..14

5.2 Непрямые методы диагностики…………………………. …………….18

Вирусы (от лат. virus — яд), мельчайшие неклеточные частицы, состоящие из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки (капсида). Капсид ( от лат. сарsa — вместилище, ящик), белковая оболочка вируса, предохраняющая его нуклеиновую кислоту от внешних воздействий. Состоит из отдельных структурных идентичных единиц — капсомеров.

Формы могут быть различными, как палочковидная, так и сферическая. Размер 15 — 350 нм и более. Открыты (вирусы табачной мозаики) Д. И. Ивановским в 1892.

Вирусы — внутриклеточные паразиты: размножаясь только в живых клетках, они используют их ферментативный аппарат и переключают клетку на синтез зрелых вирусных частиц — вирионов. Варион, полностью сформированная вирусная частица, состоящая из нуклеиновой кислоты и белковой оболочки (капсида). Хранит и переносит генетический материал вируса от одной клетки к другой.

Распространены вирусы повсеместно и вызывают болезни не только растений и животных, но и человека. Резко отличаясь от всех других форм жизни, вирусы, подобно другим организмам, способны к эволюции. Иногда их выделяют в особое царство живой природы. Вирусы широко применяются в работах по генной инженерии, канцерогенезу.

Вирусы бактерий (бактериофаги) — классический объект молекулярной биологии. Бактериофаги (от бактерии и греч. phagos — пожиратель) – вирусы бактерий способные поражать бактериальную клетку, репродуцироваться в ней и вызывать ее лизис. Классический объект исследований в молекулярной генетике. Используются для фагопрофилактики и фаготерапии инфекционных болезней.

Бактерии (от греч. bakterion — палочка), группа микроскопических, преимущественно одноклеточных организмов. Относятся к «доядерным» формам — прокариотам. В основу современной классификации бактерий, по которой все бактерии делят на эубактерий (грамотрицательные бактерии и грамположительные бактерии, микоплазмы) и архебактерий, положено строение их клеточной стенки. По форме клеток бактерии могут быть шаровидными (кокки), палочковидными (бациллы, клостридии, псевдомонады), извитыми (вибрионы, спириллы, спирохеты); диаметр 0,1-10 мкм, длина 1-20 мкм, а нитчатых многоклеточных бактерий — 50-100 мкм. Некоторые бактерии образуют споры. Многие подвижны, имеют жгутики. Питаются, используя различные органические вещества (гетеротрофы) или создавая органические вещества клеток из неорганических (автотрофы). Способны расти как в присутствии атмосферного кислорода (аэробы), так и при отсутствии (анаэробы). Участвуют в круговороте веществ в природе, формировании структуры и плодородия почв, в образовании и разрушении полезных ископаемых; поддерживают запасы углекислого газа в атмосфере. Используются в пищевой, микробиологической, химической и других отраслях промышленности. Патогенные (болезнетворные) бактерии — возбудители болезней растений, животных и человека. Полагают, что бактерии — первые организмы, появившиеся на Земле.

Расширение возможностей в лечении и профилактике вирусных болезней с использованием противовирусных препаратов, иммуномодуляторов и вакцин с различным механизмом действия нуждается в быстрой и точной лабораторной диагностике. Узкая специфичность некоторых противовирусных препаратов также требует быстрой и высокоспецифичной диагностики инфицирующего агента. Появилась необходимость в количественных методах определения вирусов для мониторинга противовирусной терапии. Помимо установления этиологии заболевания лабораторная диагностика имеет важное значение в организации противоэпидемических мероприятий.

Ранняя диагностика первых случаев эпидемических инфекций позволяет своевременно провести противоэпидемические мероприятия – карантин, госпитализацию, вакцинацию и пр. Реализация программ по ликвидации инфекционных заболеваний, например, натуральной оспы, показала, что по мере их выполнения возрастает роль лабораторной диагностики. Существенную роль играет лабораторная диагностика в службе крови и акушерской практике, например, выявление доноров, инфицированных вирусом иммунодефицита человека (ВИЧ), вирусом гепатита В (HBV), диагностика краснухи и цитомегаловирусной инфекции у беременных.

1. Поксвирус – возбудитель натуральной оспы

Поксвирусы (Poxviridae) – семейство крупных ДНК-содержащих вирусов, вызывающих у человека, животных (коров, овец, коз, верблюдов, лошадей, свиней, кроликов) и птиц заболевания с выраженным поражением кожи — пустулезного дерматита, папулезного стоматита, миксомы и конгиозного моллюска человека, т.е. натуральную оспу.

Вирус натуральной оспы – крупный вирус, относящийся к Orthopoxvirus. Несмотря на то, что натуральная оспа известна человечеству с давних времен и широко распространена во многих странах мира, этиология этой болезни была окончательно установлена только в начале двадцатого века. В 1892 году Г.Гуарниери обнаружил в гистологических срезах роговицы кролика, зараженного оспенным материалом, внутриклеточные включения величиной от 1—4 до 10 мкм, имеющие шаровидную или серповидную форму. В 1906 году Э. Пашен, применив специальный метод окраски, выявил в содержимом пузырьков вирусные корпускулы.

Вирус оспы отличается сложностью строения, он имеет форму параллелепипеда с закругленными углами. Размер его 200—250 нм. Он состоит из нуклеотида, покрытого трехслойной оболочкой. От наружного осмиофильного слоя отходят ворсинки. На противоположных сторонах вириона под оболочкой расположены два боковых тела, похожие на линзы.

Вирус натуральной оспы хорошо развивается в куриных эмбрионах, спустя 48—72 часа после заражения. На хорион – аллантоисной оболочке вызывает образование белых мелких, плотных, резко отграниченных от окружающей ткани точечных поражений. Вирус хорошо культивируется на первичных и перевиваемых клеточных культурах человека, обезьяны, овцы и других животных, в которых обнаруживаются через 24—72 часа после заражения выраженное цитопатическое действие, проявляющихся округлением и увеличением клеток с последующим их отторжением их от стекла.

У вируса натуральной оспы не обнаружено антигенных разновидностей или вариантов, он имеет общие антигены с вирусом вакцины. Различают четыре антигена: растворимые L и S, нуклеопротеидный (NP), антигены и Х –гемагллютиин. Вирус оспы имеет общие антигены с эритроцитами человека группы А и АВ.

Возбудитель оспы устойчив к действию фенола, высыханию, в высушенных оспенных корочках и в 50% глицерине сохраняется месяцами, легко переносят низкую температуру. Вирус чувствителен к действию света, при температуре 1000С погибает моментально. При 600С в течение 1 часа; 3% раствор хлорамина, фенола, лизола инактивирую вирус через 30 минут, а 1% раствор хлорной извести – через 1 час; при действии перманганата калия погибает через 70 минут.

2. Патогенность для животных

К вирусу натуральной оспы чувствительны обезьяны; при введении им вируса в кожу или тестикулы появляется специфические высыпания на коже, развивается архит, а иногда генерализация процесса. У кроликов и морских свинок наблюдаются незначительные местные поражения, а у новорожденных белых мышей при заражении в мозг развивается оспенный энцефалит.

3. Патогенез заболевания у человека

Натуральная оспа — карантинное заболевание человека. Вызывается поксвирусом. Характеризуется лихорадкой и сыпью, оставляющей рубцы. Передается от больного через воздух и предметы. В народе ее называют «Ветряная оспа».

Источник болезни – больной человек. Заражение оспой происходит воздушно—капельным и воздушно—пылевым путем, а также посредством контакта с заразным материалом. Возбудитель передается при разговоре, кашле, чихании, через пылевые частицы и предметы (одежда, белье, посуда). За последние годы были зарегистрированы случаи оспы у людей, инфицированных вирусом обезьяньей оспы.

Патогенез натуральной оспы изучен недостаточно. Известно, что во время болезни в крови находится вирус, который обладает резко выраженными дерматотропными свойствами. Он также поражает слизистые оболочки и другие ткани и органы. Наряду с вирусемией нередко наблюдается и бактериемия, вызванная стрептококками и стафилококками.

Читайте также:  Осложнения после ветряной оспы у детей

Для натуральной оспы характерная лихорадка, высыпание, образование пустул и рубцов на коже. После продромального периода и падения температуры появляется истинная сыпь на лице, туловище и конечностях; в начале она имеет папулезный характер, затем превращается в везикулезную и пустулезную. Оспенные везикулы многокамерные с прозрачным содержимым, придающим им вид жемчужины с перламутровым блеском, окруженным красным узким ободком. Оспенные пустулы имеют кратерообразные вдавления на вершине.

В стадии нагноения присоединяется вторичная (стафилококковая и стрептококковая) инфекция. У большинства переболевших на месте глубоких пустул образуются рубцы (рябины).

Летальность в зависимости от тяжести болезни колеблется в широких пределах – от 0 до 100%; в среднем она равна 15—20%, при геморрагической форме – 100%. При легких формах и вариолоиде летальных исходов обычно не бывает. У лиц с группой крови А и АВ натуральная оспа протекает тяжелее, смертельные исходы и поствакцинальные осложнения бывают чаще, постинфекционные и поствакцинальный иммунитет слабого напряжения.

К числу легких форм натуральной оспы относится вариолоид. Вариолоид характеризуется более коротким и легким течением, отсутствием сыпи или лихорадки.

Аластрим – самостоятельное, но сходная с натуральной оспой заболевание. Аластрим протекает как легкая форма натуральной оспы. Характеризуется меньшей контагиозностью. Папулезно—пузырьковая сыпь образуется в основном на лице и конечностях, цикл ее развития короче, чем при натуральной оспе. Оспенные пузырьки не имеют кратерообразных вдавлений на вершине, при отпадании корочек рубцы не остаются. Летальность низкая до 1%.

У большинства людей, болевших оспой, остается прочный иммунитет. Повторные заболевания крайне редки. У переболевших и вакцинированных в крови можно обнаружить агглютинины, комплементсвязывающие, вируснейтрализующие антитела, а также преципитины и лизины.

5. Лабораторная диагностика

Для диагностики оспы применяют вирусоскопические, вирусологические и серологические методы исследования.

Вирусоскопия заключается в обнаружение телец Пашина в мазках, приготовленных из содержимого везикул и пустул, окрашенных серебрением или обработанных люминесцирующими красителями (примулином). При просмотре их в люминесцентном микроскопе вирусные частицы легко дифференцируются по яркости и характере свечения.

Тельца Гуарниери выявляют в клетках в клетках роговицы кролика, зараженного исследуемым материалом. Препараты обрабатывают по Романовскому—Гизе, Манну, люминесцентными красителями.

Вирусологические исследования производятся для выделения вируса на хорион—аллантоисной оболочки куриного эмбриона и в культурах тканей, а также для идентификации при помощи специфических сывороток в реакциях связывания комплемента и реакции торможения гемагглютинации, задержки гемадсорбции, иммунофлюоресценции.

Для серологической диагностики оспы применяют реакции торможения гемагглютинации, связывания комплемента, нейтрализации на куриных эмбрионах и тканевых культурах.

Специфический антиген можно обнаружит в везикулярной жидкости и корочках с помощью реакции преципитации в геле, а также реакции непрямой гемагглютинации с использованием бараньих эритроцитов, сенсибилизированных противооспенными антителами.

В дифференциации натуральной оспы от ветряной оспы генирализованной вакцины аластрима учитываются характер высыпаний, очередность их появлений и исчезновения, полиморфизм, особенности, свойственные их возбудителям при культивировании культуры клеток и культурных эмбрионах, лабораторные данные.

Лечение специфическое не разработано. Первые дни болезни применяют противооспенный иммуноглобулин, полученный из крови людей, специально ревакцинированных против оспы, а также метисазон (марборан). При развитии вторичной инфекции назначают антибиотики (пенициллин, левомитецин, стрептомицин, окситетрациклин).

В лабораторной диагностике вирусных инфекций имеются три основных подхода:

1) непосредственное исследование материала на наличие вирусного антигена или нуклеиновых кислот;

2) изоляция и идентификация вируса из клинического материала;

3) серологическая диагностика, основанная на установлении значительного прироста вирусных антител в течение болезни.

При любом выбранном подходе к вирусной диагностике одним из важнейших факторов является качество исследуемого материала. Так, например, для прямого анализа образца или для изоляции вируса исследуемый материал должен быть получен в самом начале заболевания, когда возбудитель еще экскретируется в относительно больших количествах и не связан пока антителами, а объем образца должен быть достаточен для проведения прямого исследования. Также важен выбор материала в соответствии с предполагаемым заболеванием, то есть того материала, в котором исходя из патогенеза инфекции вероятность присутствия вируса наибольшая.

Не последнюю роль в успешной диагностике играет среда, в какую берется материал, как он транспортируется и как хранится. Так, носоглоточные или ректальные мазки, содержимое везикул помещают в среду, содержащую белок, предотвращающий быструю потерю инфекционности вируса (если планируется его изоляция), или в соответствующий буфер (если планируется работа с нуклеиновыми кислотами).

5.1 Прямые методы диагностики клинического материала

Прямые методы – это методы, которые позволяют обнаружить вирус, вирусный антиген или вирусную нуклеиновую кислоту (НК) непосредственно в клиническом материале, то есть являются наиболее быстрыми (2–24 ч). Однако из-за ряда особенностей возбудителей прямые методы имеют свои ограничения (возможность получения ложноположительных и ложноотрицательных результатов). Поэтому они часто требуют подтверждения непрямыми методами.

Электронная микроскопия (ЭМ). С помощью этого метода можно обнаружить собственно вирус. Для успешного определения вируса его концентрация в пробе должна быть примерно 1·106 частиц в 1 мл. Но поскольку концентрация возбудителя, как правило, в материале от больных незначительна, то поиск вируса затруднен и требует предварительного его осаждения с помощью высокоскоростного центрифугирования с последующим негативным контрастированием. Кроме того, ЭМ не позволяет типировать вирусы, так как у многих из них нет морфологических различий внутри семейства. Например, вирусы простого герпеса, цитомегалии или опоясывающего герпеса морфологически практически неотличимы.

Одним из вариантов ЭМ, используемым в диагностических целях, является иммунная электронная микроскопия (ИЭМ), при которой применяются специфические антитела к вирусам. В результате взаимодействия антител с вирусами образуются комплексы, которые после негативного контрастирования легче обнаруживаются.

ИЭМ несколько более чувствительна, чем ЭМ, и используется в тех случаях, когда вирус не удается культивировать in vitro, например при поиске возбудителей вирусных гепатитов.

Реакция иммунофлюоресценции (РИФ). Метод основан на использовании антител, связанных с красителем, например флюоресцеинизотиоцианатом. РИФ широко применяется для выявления вирусных антигенов в материале больных и для быстрой диагностики.

В практике применяются два варианта РИФ: прямой и непрямой. В первом случае применяются меченные красителем антитела к вирусам, которые наносятся на инфицированные клетки (мазок, культура клеток). Таким образом, реакция протекает одноэтапно. Неудобством метода является необходимость иметь большой набор конъюгированных специфических сывороток ко многим вирусам.

При непрямом варианте РИФ на исследуемый материал наносится специфическая сыворотка, антитела которой связываются с вирусным антигеном, находящимся в материале, а затем наслаивается антивидовая сыворотка к гамма-глобулинам животного, в котором готовилась специфическая иммунная сыворотка, например антикроличья, антилошадиная и т. п. Преимущество непрямого варианта РИФ состоит в потребности лишь одного вида меченых антител.

Метод РИФ широко применяется для быстрой расшифровки этиологии острых респираторных вирусных инфекций при анализе мазков-отпечатков со слизистой оболочки верхних дыхательных путей. Успешное применение РИФ для прямой детекции вируса в клиническом материале возможно лишь в случае содержания в нем достаточно большого числа инфицированных клеток и незначительной контаминации микроорганизмами, которые могут давать неспецифическое свечение.

Иммуноферментный анализ (ИФА). Иммуноферментные методы определения вирусных антигенов в принципе сходны с РИФ, но основываются на мечении антител ферментами, а не красителями. Наиболее широко используется пероксидаза хрена и щелочная фосфатаза, применяют также а-галактозидазу и в-лактамазы. Меченые антитела связываются с антигеном, и такой комплекс обнаруживается при добавлении субстрата для фермента, с которым конъюгированы антитела. Конечный продукт реакции может быть в виде нерастворимого осадка, и тогда учет проводится с помощью обычного светового микроскопа, или в виде растворимого продукта, который обычно окрашен (или может флюоресцировать или люминесцировать) и регистрируется инструментально.

Поскольку с помощью ИФА можно измерять растворимые антигены, то не требуется наличия интактных клеток в образце, и таким образом могут использоваться различные виды клинического материала.

Другое важное преимущество метода ИФА – возможность количественного определения антигенов, что позволяет применять его для оценки клинического течения болезни и эффективности химиотерапии. ИФА, как и РИФ, может применяться как в прямом, так и в непрямом варианте.

Твердофазный ИФА, дающий растворимый окрашеный продукт реакции, нашел наибольшее распространение. ИФА может быть использован как для определения антигена (тогда на твердую фазу – дно лунки полистиролового планшета – наносятся антитела), так и для определения антител (тогда на твердую фазу наносятся антигены).

Радиоиммунный анализ (РИА). Метод основан на метке антител радиоизотопами, что обеспечивало высокую чувствительность в определении вирусного антигена. Широкое распространение метод получил в 80-е годы, особенно для определения маркеров HBV и других некультивируемых вирусов. К недостаткам метода относится необходимость работать с радиоактивными веществами и использования дорогостоящего оборудования (гамма-счетчиков).

Молекулярные методы. Первоначально классическим методом выявления вирусного генома считался высокоспецифичный метод гибридизации НК, но в настоящее время все шире используется выделение геномов вируса с помощью полимеразной цепной реакции (ПЦР).

Молекулярная гибридизация нуклеиновых кислот. Метод основан на гибридизации комплементарных нитей ДНК или РНК с образованием двунитевых структур и на выявлении их с помощью метки. Для этой цели используются специальные ДНК — или РНК-зонды, меченные изотопом (32Р) или биотином, обнаруживающие комплементарные нити ДНК или РНК. Существуют несколько вариантов метода:

– точечная гибридизация – выделенную и денатурированную НК наносят на фильтры и затем добавляют меченый зонд; индикация результатов

– авторадиография при использовании 32Р или окраска – при авидин-биотине;

– блот-гибридизация – метод выделения фрагментов НК, нарезанных рестрикционными эндонуклеазами из суммарной ДНК и перенесенных на нитроцеллюлозные фильтры и тестируемые мечеными зондами; используется как подтверждающий тест при ВИЧ инфекции;

– гибридизация in situ – позволяет определять НК в инфицированных клетках.

ПЦР основана на принципе естественной репликации ДНК. Суть метода заключается в многократном повторении циклов синтеза (амплификации) вирусоспецифической последовательности ДНК с помощью термостабильной Taq ДНК-полимеразы и двух специфических затравок – так называемых праймеров.

Каждый цикл состоит из трех стадий с различным температурным режимом. В каждом цикле удваивается число копий синтезируемого участка. Вновь синтезированные фрагменты ДНК служат в качестве матрицы для синтеза новых нитей в следующем цикле амплификации, что позволяет за 25–35 циклов наработать достаточное число копий выбранного участка ДНК для ее определения, как правило, с помощью электрофореза в агарозном геле.

Метод высокоспецифичен и очень чувствителен. Он позволяет обнаружить несколько копий вирусной ДНК в исследуемом материале. В последние годы ПЦР находит все более широкое применение для диагностики и мониторинга вирусных инфекций (вирусы гепатитов, герпеса, цитомегалии, папилломы и др.).

Разработан вариант количественной ПЦР, позволяющий определять число копий амплифицированного сайта ДНК. Методика проведения сложна, дорогостояща и пока недостаточно унифицирована для рутинного применения.

Цитологические методы в настоящее время имеют ограниченное диагностическое значение, но при ряде инфекций по-прежнему должны применяться. Исследуются материалы аутопсии, биопсии, мазки, которые после соответствующей обработки окрашиваются и анализируются под микроскопом. При цитомегаловирусной инфекции, например, в срезах ткани или в моче обнаруживаются характерные гигантские клетки– «совиный глаз», при бешенстве – включения в цитоплазме клеток (тельца Бабеша–Негри). В некоторых случаях, например при дифференциальной диагностике хронических гепатитов, имеет значение оценка состояния ткани печени.

5.2 Непрямые методы диагностики

Выделение вирусов – один из самых старых и трудоемких методов диагностики. Однако и сегодня выделение вируса с последующей идентификацией с помощью одного из современных методов (ИФА с моноклональными антителами или ПЦР) является наиболее достоверным методом диагностики – так называемый «золотой стандарт».

Для успешного выделения вирусов клинический материал должен быть взят в соответствии с патогенезом предполагаемого заболевания и в наиболее ранние сроки.

– при респираторных инфекциях – носоглоточный смыв;

– при энтеровирусных инфекциях – смыв и фекалии (рео-, энтеровирусы);

– при поражениях кожи и слизистых оболочек – соскобы, содержимое пузырьков (герпес, ветряная оспа);

– при экзантемных инфекциях – смывы (корь, краснуха);

– при арбовирусных инфекциях – кровь, спинномозговая жидкость.

Для выделения вирусов используют культуры клеток, лабораторных животных, эмбрионы кур. Процесс длительный, иногда требующий проведения нескольких пассажей, прежде чем вирус будет обнаружен и идентифицирован с помощью одного или нескольких методов – в реакции нейтрализации (РН), РИФ, ИФА или ПЦР.

В настоящее время в большинстве случаев выделение вирусов заменено обнаружением вирусоспецифических антигенов в инфицированных клеточных культурах с помощью указанных методов. Для этих целей широко применяются моноклональные антитела, особенно к ранним белкам возбудителя в РИФ или ИФА. Такой подход позволяет получить ответ уже через 24–72 ч после инфицирования клеток культуры тканей.

Серологическая диагностика, основанная на реакции антиген – антитело, может быть использована для определения, как тех, так и других, и играет роль в определении этиологии вирусной инфекции даже при отрицательных результатах выделения вируса.

Успех серологической диагностики зависит от специфичности реакции и соблюдения временных условий взятия крови, необходимых для синтеза организмом антител.

В большинстве случаев используют парные сыворотки крови, взятые с интервалом в 2–3 нед. Положительной реакция считается, по крайней мере, при 4-кратном нарастании титра антител. Известно, что большинство специфических антител относятся к классам IgG и IgM, которые синтезируются в различное время инфекционного процесса. При этом IgM антитела относятся к ранним, и тесты, используемые для их определения, применяются для ранней диагностики (достаточно исследовать одну сыворотку). Антитела класса IgG синтезируются позже и длительно сохраняются.

Для типирования вирусов применяется РН, при группоспецифической диагностике, например аденовирусной инфекции, используют реакцию связывания комплемента (РСК). Наиболее употребительными являются реакция торможения гемагглютинации (РТГА), РСК, РИФ, реакции пассивной и обратной пассивной гемагглютинации (РПГА, РОПГА), различные варианты ИФА, практически повсеместно заменившего равный ему по чувствительности РИА.

РТГА используется для диагностики заболеваний, вызванных гемагглютинирующими вирусами. Она основана на связывании антителами сыворотки больного добавленного стандартного вируса. Индикатором реакции являются эритроциты, агглютинирующиеся вирусом (формирование характерного «зонтика») при отсутствии специфических антител и оседающие на дно неагглютинированными при их наличии.

Читайте также:  Мазь от оспы у коров

РСК является одной из традиционных серологических реакций и используется для диагностики многих вирусных инфекций. В реакции принимают участие две системы: антитела сыворотки больного + стандартный вирус и эритроциты барана + антитела к ним, а также оттитрованный комплемент. При соответствии антител и вируса этот комплекс связывает комплемент и лизиса бараньих эритроцитов не происходит (положительная реакция). При отрицательной РСК комплемент способствует лизису эритроцитов. Недостатком метода является его недостаточно высокая чувствительность и трудность стандартизации реагентов.

Для учета значимости РСК также, как и РТГА, необходимо титрование парных сывороток, то есть взятых в начале заболевания и в период реконвалесценции.

РПГА – агглютинация сенсибилизированных вирусными антигенами эритроцитов (или полистироловых шариков) в присутствии антител. На эритроцитах могут быть сорбированы любые вирусы, независимо от наличия или отсутствия у них гемагглютинирующей активности. В связи с наличием неспецифических реакций сыворотки исследуются в разведении 1:10 и более.

РНГА – агглютинация эритроцитов, сенсибилизированных специфическими антителами в присутствии вирусных антигенов. Наибольшее распространение РОПГА получила при выявлении HBs-антигена как у больных, так и у доноров крови.

ИФ метод так же, как ИФА, применяется для определения антител в сыворотке. Все большее значение и распространение получает ИФА для диагностических целей. На твердую фазу (дно лунок полистироловых планшет или полистироловые шарики) сорбируется вирусный антиген. При добавлении соответствующих антител, находящихся в сыворотке, происходит их связывание с сорбированными антигенами. Наличие искомых антител обнаруживается с помощью анти-антител (например, человеческих), конъюгированных с ферментом (пероксидазой). Добавление субстрата и реакция субстрат – фермент дают окраску. ИФА может быть использована и для определения антигенов. В этом случае на твердую фазу сорбируются антитела.

Моноклональные антитела. Большой прогресс в диагностике вирусных инфекций достигнут в последнее десятилетие, когда с развитием генно-инженерных исследований была разработана система получения моноклональных антител. Тем самым были резко повышены специфичность и чувствительность диагностических методов определения вирусных антигенов. Узкая специфичность моноклонов, представляющих небольшую долю вирусных белков, которые могут не присутствовать в клиническом материале, успешно преодолевается использованием нескольких моноклональных антител к различным вирусных детерминантам.

Оспа известна более 10 тысяч лет. По оценкам, за это время она унесла около 500 миллионов человеческих жизней. В качестве профилактических мер борьбы с оспой с конца 18 века применяли вакцинацию. Декрет об обязательном оспопрививании в России был принят в 1919 году, и с 1936 году на территории СССР не регистрировалось вспышек болезни, были только случаи завоза болезни из-за рубежа. В 1960-1970-х годах усилиями ведущих мировых держав была проведена иммунизация всего населения Земли и в 1980 году объявлено о победе над оспой. После этого вакцинация была прекращена, и к началу 21 века уже 60 процентов населения Земли не имеют прививки от оспы.

Количество методов, используемых для диагностики вирусных инфекций, непрерывно растет. Одни уходят в прошлое и имеют в основном историческое значение, другие совершенствуются. Несомненно, что технический прогресс в определении антител, белкового анализа и генодиагностики наряду с расширением наших знаний вирусов и патогенеза вирусных инфекций приведут к появлению новых высокоспецифичных и высокочувствительных методов, удобных для клинического применения.

В настоящее время выпускается большое количество коммерческих сертифицированных тест-систем, в том числе и отечественных, для диагностики наиболее распространенных и социально значимых вирусных инфекций. Государственный реестр содержит более 600 диагностических препаратов. Однако далеко не для всех групп вирусов имеются диагностические тест-системы. Например, из большой группы энтеровирусов (более 80 членов) только для определения вирусов полиомиелита имеются тест-системы, в то же время для диагностики ВИЧ-инфекции выпускается более 15 различных наборов.

1. Павлов И.Ю., Вахненко Д.В., Москвичев Д.В. Биология. Пособие—репетитор для поступающих в вузы. – Минск: Интерпрессервис. – Ростов н\Д: Феникс, 2002 г.

2. Хомченко Г.П. Пособие по химии для поступающих в вузы. – 4-е изд., испр. и доп. – М.: ООО «Издательство Новая Волна»: Издатель Умеренков, 2002 г.

3. К.П. Пяткин, Ю.С. Кривошеин. Микробиология. М.: «Медицина», 1980 г.

4. Анишулина А.В. Медицинская микробиология. Учебное пособие. – Ростов-на-Дону: Феникс, 2003 г.

5. Аванян А.А. Атлас анатомии бактерий, патогенных для человека и животных. М.: «Медицина», 1972 г.

источник

Таксономия.Вирус натуральной оспы — ДНК-содержащий, семейство Poxviridae, род Orthopoxvirus. Морфология и антигенная структура.Вирионы поксвирусов имеют кирпичеобразную или овоидную форму. Вирус натуральной оспы — один из самых крупных вирусов, обнаружен в световом микроскопе. Вирионы видны при специальных методах окраски в виде так называемых элементарных телец Пашена (окраска серебрением по Морозову). Поверхность вириона состоит из нитевидных, овоидных элементов. Оболочка и наружная мембрана вириона заключают сердцевину (ДНК и белки) и мембрану сердцевины. Геном вириона — двунитевая линейная ДНК с ковалентно замкнутыми концами. Вирусы имеют более 30 структурных белков. Антигены — нуклеопротеиновый, растворимые и гемагглютинин; имеются общие антигены с вирусом вакцины. Культивирование.Вирус размножается: в куриных эмбрионах с образованием белых бляшек на хорион-аллантоисной оболочке; в культуре клеток, в цитоплазме которых формируются характерные околоядерные включения. Резистентность.Вирусы устойчивы к высушиванию и низким температурам, нечувствительны к эфиру. Моментально погибают при 100С, а при 60С — через 15 мин. Эпидемиология.Особо опасная карантинная инфекция. Источником инфекции является больной человек, который заразен с последних дней инкубационного периода и до отпадения корок высыпаний. Инфицирование происходит воздушно-капельным, воздушно-пылевым, а также контактно-бытовым путями при соприкосновении с вещами больного, загрязненными слизью, гноем, калом и мочой, содержащими вирус. Патогенез. Вирус проникает через слизистые оболочки верхних дыхательных путей, реже — через кожу и после размножения в регионарных лимфатических узлах попадает в кровь. Из крови возбудитель заносится в кожу и лимфоидные ткани, в которых происходит размножение вирусов, формируются очаги поражения в коже, слизистых оболочках и паренхиматозных органах. Характерно образование папулезных высыпаний. Клиника.Инкубационный период 7—17 дней. Заболевание проявляется высокой температурой тела, рвотой, головной и поясничной болями, появлением сыпи. Первоначально сыпь имеет вид розовых пятен, которые затем переходят сначала в узелки — папулы, а затем — в пузырьки (везикулы) и пустулы , подсыхающие и превращающиеся в корки. Различают несколько форм оспы: тяжелую (пустулезно-геморрагическая); среднетяжелую; легкую (оспа без сыпи, оспа без повышения температуры тела). Иммунитет. После перенесенной болезни формируется стойкий пожизненный иммунитет, обусловленный появлением вируснейтрализующих антител, интерферонов и активацией факторов клеточного иммунитета. Микробиологическая диагностика. Исследуют содержимое элементов сыпи, отделяемое носоглотки, кровь, пораженные органы и ткани. Вирус выявляют при электронной микроскопии, в РИФ, РП, по образованию телец Гварниери. Выделяют вирус путем заражения куриных эмбрионов и культур клеток с последующей идентификацией в реакции нейтрализации (на куриных эмбрионах), РСК, РТГА. Серологическую диагностику проводят в РТГА, РСК, РИГА, реакции нейтрализации.

Лечение. Симптоматическое; индукторами интерферона и противовирусными препаратами. Профилактика. Прочный иммунитет создает живая оспенная вакцина. Ее готовят из соскобов сыпи телят или при культивировании вируса вакцины (осповакцины) на куриных эмбрионах. Вакцину вводят накожно. Разработана оральная таблетированная вакцина, менее реактогенная.

Понятие о химиотерапии.

Химиотерапия — специфическое антимикробное, антипаразитарное лечение при помощи химических веществ. Эти вещества обладают важнейшим свойством — избирательностью действия против болезнетворных микроорганизмов в условиях макроорганизма.

Основоположником химиотерапии является немецкий химик, лауреат Нобелевской премии П.Эрлих, который установил, что химические вещества, содержащие мышьяк, губительно действуют на спирохеты и трипаносомы, и получил в 1910 г. первый химиотерапевтический препарат — сальварсан (соединение мышьяка, убивающее возбудителя, но безвредное для микроорганизма).

В 1935 г. другой немецкий химик Г.Домагк обнаружил среди анилиновых красителей вещество — пронтозил, или красный стрептоцид, спасавший экспериментальных животных от стрептококковой инфекции, но не действующий на эти бактерии вне организма. За это открытие Г.Домагк был удостоен Нобелевской премии. Позднее было выяснено, что в организме происходит распад пронтозила с образованием сульфаниламида, обладающего антибактериальной активностью как in vivo, так и in vitro.

Механизм действия сульфаниламидов (сульфонамидов) на микроорганизмы был открыт Р.Вудсом, установившим, что сульфаниламиды являются структурными аналогами парааминобензойной кислоты (ПАБК), участвующей в биосинтезе фолиевой кислоты, необходимой для жизнедеятельности бактерий. Бактерии, используя сульфаниламид вместо ПАБК, погибают.

Первый природный антибиотик был открыт в 1929 г. английским бактериологом А.Флемингом. При изучении плесневого гриба Penicillium notatum, препятствующего росту бактериальной культуры, А. Флеминг обнаружил вещество, задерживающее рост бактерий, и назвал его пенициллином. В 1940 г. Г. Флори и Э. Чейн получили очищенный пенициллин. В 1945 г. А Флеминг, Г. Флори и Э. Чейн стали Нобелевскими лауреатами.

В настоящее время имеется огромное количество химиотерапевтических препаратов, которые применяются для лечения заболеваний, вызванных различными микроорганизмами.

Сульфаниламиды – к этой группе относятся многочисленныепроизводные сульфаниловой кислоты. Механизм их действия состоит в том, что они являются структурными аналогами парааминобензойной кислоты и нарушают синтез фолиевой кислоты, а через него – синтез ДНК, т. е. являются микробными антиметаболитами (будучи близки по структуре, заменяют то или иное соединение, принимающее участие в микробном метаболизме).

Хинолоны – это группа химиотерапевтических веществ, полученных на основе:

собственно хинолонов (препараты группы налидиксовой кислоты):

– налидиксовая кислота(неграм, невиграмон),

– 4-аминохинолон (оксолипиевая кислота),

– 8-аминохинолон (нитроксолин– 5-НОК);

– офлоксацин (заноцин, таривид),

– ципрофлоксацин (цифран, ципробай, ципролет),

Механизм действия хинолонов состоит в нарушении различных этапов(репликации, дупликации, транскрипции, репарации) синтеза ДНК микробной клетки. Несмотря на казалось бы универсальный механизм действия на микробную клетку, фторхинолоны не оказывают влияния на анаэробные бактерии, а налидиксовая кислота активна только в отношении грамотрицательных микроорганизмов (исключая род псевдомонад), что отражено в коммерческом названии одного из препаратов – неграм.

Видовой (наследственный) иммунитет.

Врожденный, иди видовой, иммунитет, он же наследственный, генетический, конституциональный — это выработанная в процессе филогенеза генетически закрепленная, передающаяся по наследству невосприимчивость данного вида и его индивидов к какому-либо антигену (или микроорганизму), обусловленная биологическими особенностями самого организма, свойствами данного антигена, а также особенностями их взаимодействия.

Примером может служить невосприимчивость человека к некоторым возбудителям, в том числе к особо опасным для сельскохозяйственных животных (чума крупного рогатого скота, болезнь Ньюкасла, поражающая птиц, оспа лошадей и др.), нечувствительность человека к бактериофагам, поражающим клетки бактерий. К генетическому иммунитету можно также отнести отсутствие взаимных иммунных реакций на тканевые антигены у однояйцовых близнецов; различают чувствительность к одним и тем же антигенам у различных линий животных, т. е. животных с различным генотипом.

Объяснить видовой иммунитет можно с разных позиций, прежде всего отсутствием у того или иного вида рецепторного аппарата, обеспечивающего первый этап взаимодействия данного антигена с клетками или молекулами-мишенями, определяющими запуск патологического процесса или активацию иммунной системы. Не исключены также возможность быстрой деструкции антигена, например, ферментами организма или же отсутствие условий для приживления и размножения микроба (бактерий, вирусов) в организме. В конечном итоге это обусловлено генетическими особенностями вида, в частности отсутствием генов иммунного ответа к данному антигену.

Видовой иммунитет может быть абсолютным и относительным. Например, нечувствительные к столбнячному токсину лягушки могут реагировать на его введение, если повысить температуру их тела. Белые мыши, не чувствительные к какому-либо антигену, приобретают способность реагировать на него, если воздействовать на них иммунодепрессантами или удалить у них центральный орган иммунитета — тимус.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

источник

111. Возбудитель натуральной оспы. Таксономия. Харак­теристика. Лабораторная диагностика. Специфическая профилактика оспы на современном этапе

Таксономия. Вирус натуральной ос­пы — ДНК-содержащий, семейство Poxviridae, род Orthopoxvirus.

Морфология и антигенная структура. Вирионы поксвирусов имеют кирпичеобразную или овоидную форму. Вирус натуральной оспы — один из самых крупных вирусов, обнаружен в световом мик­роскопе. Вирионы видны при специальных методах окраски в виде так называемых элементарных телец Пашена (ок­раска серебрением по Морозову). Поверхность вириона состоит из нитевидных, овоидных эле­ментов. Оболочка и наружная мембрана вири­она заключают сердцевину (ДНК и белки) и мембрану сердцевины. Геном вириона — двунитевая линейная ДНК с ковалентно замкнутыми кон­цами. Вирусы имеют более 30 структурных белков. Антигены — нуклеопротеиновый, растворимые и гемагглютинин; имеются общие ан­тигены с вирусом вакцины.

Культивирование. Вирус размножается: в куриных эмбрионах с образованием белых бляшек на хорион-аллантоисной оболочке; в культуре клеток, в цитоплазме которых формируются ха­рактерные околоядерные включения.

Резистентность. Вирусы устойчивы к вы­сушиванию и низким температурам, нечувс­твительны к эфиру. Моментально погибают при 100С, а при 60С — через 15 мин.

Эпидемиология. Особо опасная конвенционная (ка­рантинная) инфекция. Источником инфек­ции является больной человек, который заразен с последних дней инкубационного периода и до отпадения корок высыпаний. Инфицирование происходит воздушно-капель­ным, воздушно-пылевым, а также контактно-бытовым путями при соприкосновении с ве­щами больного, загрязненными слизью, гноем, калом и мочой, содержащими вирус.

Патогенез. Вирус прони­кает через слизистые оболочки верхних ды­хательных путей, реже — через кожу и после размножения в регионарных лимфатических узлах попадает в кровь. Из крови возбудитель заносится в кожу и лимфоидные ткани, в которых происходит размноже­ние вирусов, формируются очаги поражения в коже, слизис­тых оболочках и паренхиматозных органах. Характерно образование папулезных высыпаний.

Клиника. Инкубационный период 7—17 дней. Заболевание проявляется высокой температурой тела, рвотой, головной и поясничной болями, появлением сыпи. Первоначально сыпь имеет вид розовых пятен, которые затем переходят сначала в узелки — папулы, а затем — в пузырьки (везикулы) и пустулы , подсыхающие и превращающиеся в корки.

Читайте также:  Ветряная оспа у взрослого фото

Различают несколько форм оспы: тяжелую (пустулезно-геморрагическая); среднетяжелую; легкую (оспа без сыпи, оспа без повыше­ния температуры тела).

Иммунитет. После перенесенной болезни формируется стойкий пожизненный иммуни­тет, обусловленный появлением вируснейтрализующих антител, интерферонов и актива­цией факторов клеточного иммунитета.

Микробиологическая диагностика. Исследуют содержимое элементов сыпи, отделяемое носоглотки, кровь, пора­женные органы и ткани. Вирус выявляют при электронной микроскопии, в РИФ, РП, по образованию телец Гварниери. Выделяют вирус путем заражения куриных эмбрионов и культур клеток с последующей идентифика­цией в реакции нейтрализации (на куриных эмбрионах), РСК, РТГА. Серологическую диагностику проводят в РТГА, РСК, РИГА, реакции нейтрализации.

Лечение. Симптоматическое; ин­дукторами интерферона и противовирусными препаратами.

Профилактика. Прочный им­мунитет создает живая оспенная вакцина. Ее готовят из соскобов сыпи телят или при культи­вировании вируса вакцины (осповакцины) на куриных эмбрионах. Вакцину вводят накожно. Разработана оральная таблетированная вакцина, менее реактогенная.

источник

Возбудитель натуральной оспы. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилактика оспы.

Вирус вызывает особо опасное высококонтагиозное инфекционное заболевание, характеризующееся общим поражением организма и обильной сыпью на коже и слизистых оболочках. Таксономия. Вирус натуральной оспы – ДНК-содержащий; относится к семейству Poxviridae (от англ, рох – язва), роду Orthopoxvirus.

Лабораторная диагностика.Материалом для исследования служит содержимое элементов сыпи на коже и слизистых оболочках, отделяемое носоглотки, кровь, в летальных случаях – кусочки пораженной кожи, легкого, селезенки, кровь. Экспресс-диагностика натуральной оспы заключается в обнаружении: а) вирусных частиц под электронным микроскопом; б) телец Гварниери в пораженных клетках; в) вирусного антигена с помощью РИФ, РСК, РПГА, ИФА и других специфических реакций. Выделение вируса осуществляют в куриных эмбрионах или клеточных культурах. Идентификацию вируса, выделенного из куриного эмбриона, проводят с помощью РН (на куриных эмбрионах), РСК или РТГА. Вирус, выделенный на культуре клеток, обладает гемадсорбирующей активностью по отношению к эритроцитам кур, поэтому для его идентификации используют реакцию торможения гемадсорбции и РИФ. Серологическую диагностику осуществляют с помощью РТГА, РСК, РН в куриных эмбрионах и на культурах клеток.

Специфическая профилактика и лечение. Живые оспенные вакцины готовят накожным заражением телят или куриных эмбрионов вирусом вакцины (осповакцины). Повсеместная вакцинация населения привела к ликвидации натуральной оспы на земном шаре и отмене с 1980 г. обязательного оспопрививания. Поэтому оспенные вакцины необходимо использовать только по эпидемическим показаниям с целью экстренной массовой профилактики. Методы введения вакцин – накожно или через рот (таб-летированная форма). После вакцинации формируется прочный иммунитет. Для лечения натуральной оспы, помимо симптоматической терапии, применяли химиотерапевтический препарат – метисазон. Морфология, химический состав, антигенная структура. Вирус натуральной оспы является самым крупным вирусом, при электронной микроскопии имеет кирпичеобразную форму. Культивирование. Вирусы хорошо размножаются в куриных эмбрионах.

Резистентность. Вирусы оспы обладают довольно высокой устойчивостью к окружающей среде. На различных предметах при комнатной температуре сохраняют инфекционную активность в течение нескольких недель и месяцев; не чувствительны к эфиру и другим жирорастворителям. Источником инфекции— больной человек, который заразен в течение всего периода болезни. передается воздушно-капельным и воздушно-пылевым путями, контактно-бытовой механизм передачи – через поврежденные кожные покровы.

1.Формы инфекции.В зависимости от свойств возбудителя, условий заражения, иммунологических особенностей макроорганизма формируются различные формы инфекции : 1.носительства, -возбудитель размножается, циркулирует в организме, происходит формирование иммунитета и очищение организма от возбудителя, но отсутствуют субъективные и клинически выявляемые симптомы болезни. Больной имеет специфические антитела, но не имеет клинических проявлений.( гепатита А, полиомиелита) Бывает: бактерионосительство» ,«вирусоносительство», «гельминтоносительство», «паразитоносительство». 2.латентной инфекции – не проявляется клинически, но возбудитель сохраняется в организме, иммунитет не формируется и на определенном этапе при достаточно длительном сроке наблюдения возможно появление клинических признаков болезни. (туберкулезе, сифилисе).3.инфекционной болезни.Перенесенная в той или иной форме инфекции не всегда гарантирует от повторного заражения, особенно при генетической предрасположенности, обусловленной дефектами в системе специфических и неспецифических защитных механизмов, или кратковременности иммунитета. Повторное заражение и развитие инфекции, вызванной тем же возбудителем, обычно в форме клинически выраженной инфекционной болезни (например, при менингококковой инфекции, скарлатине, дизентерии, роже, называются реинфекцией. Одновременное возникновение двух инфекционных процессов называется микст-инфекцией. Возникновение инфекционного процесса, вызванного активацией нормальной флоры, населяющей кожу и слизистые оболочки, обозначается как аутоинфекция.

2.Понятие об иммуномодуляторах. Принцип действия. Применение. Иммуномодуляторы – вещества, оказывающие влияние на функцию иммунной системы, изменяющие активность иммунной системы в сторону повешения (иммуностимуляторы) или понижения (иммунодепрессанты) её активности.К экзогенным иммуномодуляторам отно­сится большая группа веществ различной хи­мической природы и происхождения, оказы­вающих неспецифическое активирующее или супрессивное действие на иммунную систему, но являющихся чужеродными для организма. Антибиотики, левамизол, полисахариды, ЛПС, адъюванты.Эндогенные иммуномодуляторы представляют собой достаточно большую группу олигопептидов, синтезируемых самим организмом, его иммунокомпетентными клетка­ми, и способных активировать иммунную сис­тему путем усиления функции иммунокомпетентных клеток. К ним относятся регуляторные пептиды: интерлейкины, интерфероны, гормоны тимуса.Применение иммуномодуляторов: при первичных и вторичных имму-нодефицитах различного происхождения, при онкологических болезнях, при транспланта­ции органов и тканей, при лечении иммуно­патологических и аллергических болезней, в иммунопрофилактике и лечении инфек­ционных болезней.Созданы препараты, обладающие иммуномодулирующим действием: интерферон, лейкоферон, виферон.

3.Классификация и характеристика онкогенных вирусов.РНК-содержащие: семейство Retroviridae.

ДНК-содержащие: семейства Papillomaviridae, Polyomaviridae, Adenoviridae 12, 18, 31, Hepadnaviridae, Herpesviridae, Poxviridae Сем. Retroviridae включает 7 родов. Онковирусы являются сложноорганизованными вирусами. Вирионы построены из сердцевины, окружен­ной липопротеиновой оболочкой с шипами. Размеры и формы шипов, а также локализа­ция сердцевины служат основой для подраз­деления вирусов на 4 морфологических типа (А, В, С, D), а также вирус бычьего лейкоза. Капсид онковирусов построен по кубичес­кому типу симметрии. В него заключены нуклеопротеин и фермент ревертаза. Ревертаза обладает способностью транскрибировать ДНК. Геном – 2 идентичные цепи РНК.

Культивирование вирусов: не культивируются на куриных эмбрионах, культивируются в организме чувствительных животных, в культурах клеток. Репродукция вирусов: проникают в клетку путем эндоцитоза. 3 этапа: синтез ДНК, на матрице РНК; ферментативное расщепление матричной РНК; синтез комплементарной нити ДНК на матрице первой нити ДНК. К семейству Retroviridaeотносится пример­но 150 видов вирусов, вызывающих развитие опухолей у животных, и только 4 вида вызы­вают опухоли у человека: HTLV-1, HTLV-2, ВИЧ-1,ВИЧ-2. Вирусы Т-клеточного лейкоза человека К семейству Retroviridae роду Deltaretrovirus относятся вирусы, поражающие CD4 Т-лимфоциты, для которых доказана этиологичес­кая роль в развитии опухолевого процесса у людей: HTLV-1 и HTLV-2

Вирус HTLV-1 является возбудителем Т-клеточного лимфолейкоза взрослых. Он является экзогенным онковирусом, который, в отли­чие от других онковирусов, имеет два допол­нительных структурных гена: tax и rех.

Продукт tax-гена действует на терминаль­ные повторы LTR, стимулируя синтез вирус­ной иРНК, а также образование ИЛ-2 рецеп­торов на поверхности зараженной клетки. Продукт rex-гена определяет очередность трансляции вирусных иРНК. HTLV-2 был изолирован от больного во­лосисто-клеточным лейкозом. Оба вируса передаются половым, трансфузионным и трансплацентарным путями.

Семейство Papillomaviridae – вирус папилломы человека, собак. Вызывают инфекцию в клетках плоского эпителия. Доброкачественные папилломы в области половых органов, на коже, на слизистых дыхательных путей.

Семейство Polyomaviridae – вакуолизирующий вирус обезьян SV-40.Вирус полиомы человека. Семейство Adenoviridae – аденовирусы, особенно серотипы 12,18,31 – индуцируют саркомы и трансформируют культуры клеток. Семейство Poxviridae – вирусы фибромы-миксомы кролика, вирус Ябы, вызывающий развитие опухолей, вирус контагиозного моллюска.

Семейство Herpesviridae– лимфомы, карциномы. Онкогенез у человека связан с вирусом простого герпеса 2 типа (ВПГ-2) и вирусом Эпштейна-Барр (ВЭБ).

1.Патогенность и вирулентность бактерий. Факторы патогенности.Патогенность — видовой признак, передающийся по наследству, закрепленный в геноме мик­роорганизма, в процессе эволюции паразита, т. е. это генотипический признак, отражающий потенциальную возможность мик­роорганизма проникать в макроорганизм (инфективность) и раз­множаться в нем ,вызывать комплекс патоло­гических процессов.

Фенотипическим признаком патогенного микроорганизма является его вирулентность, т.е. свойство штамма, которое проявляется в определенных условиях. Вирулент­ность можно повышать, понижать, измерять, т.е. она является мерой патогенности. К факторам патогенности относят способность микроорганизмов прикрепляться к клеткам (адгезия), размещаться на их поверхности (колонизация), проникать в клетки (инвазия) и противостоять факторам защиты организма (агрессия).

Адгезия— способность микроорганизма адсорбироваться на чувствительных клетках с последующей колонизацией. Структуры, ответственные за связывание микроорганизма с клеткой называются адгезинами и располагаются они на его поверхности. На процесс адгезии могут влиять физико-химические механизмы, связанные с гидрофобностью микробных клеток, суммой энергии притяжения и отталкивания. У грамотрицательных бактерий адгезия происходит за счет пилей I и общего типов. У грамположительных бактерий адгезины представляют собой белки и тейхоевые кислоты клеточной стенки. У других микроорганизмов эту функцию выполняют различные структуры клеточной системы: поверхностные белки, липополисахариды, и др.
Инвазия-способность микробов проникать через слизистые, кожу, соединительно-тканные барьеры во внутреннюю среду организма и распространятся по его тканям и органам. Проникновение в клетку связывается с продукцией ферментов, а также с факторами подавляющими клеточную защиту. Так фермент гиалуронидаза расщепляет гиалуроновую кислоту, входящую в состав межклеточного вещества, и, таким образом, повышает проницаемость слизистых оболочек и соединительной ткани. Нейраминидаза расщепляет нейраминовую кислоту, которая входит в состав поверхностных рецепторов клеток слизистых оболочек, что способствует проникновению возбудителя в ткани.
Агрессия- способность возбудителя противостоять защитным факторам макроорганизма. К факторам агрессии относятся: протеазы — ферменты, разрушающие иммуноглобулины; коагулаза — фермент, свертывающий плазму крови; фибринолизин — растворяющий сгусток фибрина; лецитиназа — фермент, действующий на фосфолипиды мембран мышечных волокон, эритроцитов и других клеток.

Экзотоксиныпродуцируют как грамположительные, так и грамотрицательные бактерии. По своей химической структуре это белки. По механизму действия экзотоксина на клетку различают несколько типов: цитотоксины, мембранотоксины, функциональные блокаторы, эксфолианты и эритрогемины. Механизм действия белковых токсинов сводится к повреждению жизненно важных процессов в клетке. Экзотоксины являются сильными антигенами, которые и продуцируют образование в организме антитоксинов.

Экзотоксины обладают высокой токсичностью. Токсины, которые утрачивают свою токсичность, но сохраняют иммуногенное свойство-анатоксины и применяются для профилактики заболевания столбняка, гангрены….
Эндотоксиныпо своей химической структуре являются липополисахаридами, которые содержатся в клеточной стенке грамотрицательных бактерий и выделяются в окружающую среду при лизисе бактерий. Эндотоксины не обладают специфичностью, термостабильны, менее токсичны, обладают слабой иммуногенностью.
2.Иммунотерапия и иммунопрофилактика инфекционных болезней.Иммунопрофилактика и иммунотерапия являются разделами иммунологии, которые изучают и разрабатывают способы и методы специфической профилактики, лечения и диа­гностики инфекционных и неинфекционных болезней с помощью иммунобиологических препаратов, оказывающих влияние на функ­цию иммунной системы, или действие которых основано на иммунологических принципах.Иммунопрофилактиканаправлена на со­здание активного или пассивного иммуни­тета к возбудителю инфекционной болезни, его антигену с целью предупреждения возможного заболевания путем формирования невосприимчивости к ним организма.

Иммунотерапия направлена на лечение уже развившейся болезни, в ос­нове которой лежит нарушение функции им­мунной системы. Иммунопрофилактика и иммунотерапия применяются, когда необходимо:

а)сформировать, создать специфический иммунитет, активизировать деятельность иммунной системы;

б) подавить активность звеньев иммунной системы;

в)нормализовать работу иммунной систе­мы.

Иммунопрофилактика и иммунотерапия применяются в про­филактике и лечении инфекционных болез­ней, аллергий, иммунопатологических состо­яний, в онкологии, трансплантологии, при первичных и вторичных иммунодефицитах.

В лечении токсинемических инфек­ций (ботулизм, столбняк) значение имеет серотерапия, т.е. применение антитокси­ческих сывороток, и иммуноглобулин.

В терапии онкологических болезней применяются иммуноцитокины.

Для всего этого – иммунобиологические препараты.

3. Классификация микозов (грибов). Характеристика. Роль в патологии человека. Лабораторная диагностика. Лечение.

Заболевания, вызываемые грибами, называются микозами. Названия болезней иногда связаны с локализацией патологического процесса (на коже – дерматомикозы, в легких – пневмомикозы и т. д.), иногда – с видом возбудителя (мукоромикоз, аспергиллез, трихофития и т. д.). классификация возбудителей микозов:

I. Возбудители глубоких (системных) микозов: Coccidioides immitis, Histoplasma capsulatum, Criptococcus neoformans, Blastomyces dermatitidis.

II. Возбудители подкожных (субкутанных) микозов: Sportrichum schenckii и др.

III. Возбудители эпидермомикозов (дерматомикозов): Epidermophyton floccosum, Microsporum canis, Trichophyton rubrum и др.

IV. Возбудители кератомикозов (поверхностных микозов): Malassezia furfur, Cladosporium werneskii, Trichosporon cutaneum и др.

V. Возбудители оппортунистических микозов: Candida albicans; различные виды родов Aspergillus, Mucor, Penicillium и др.

Характеристика микозов.Глубокие микозы напоминают хронические бактериальные инфекции, вызванные туберкулезной палочкой и актиномицетами. Первичные поражения обычно затрагивают легкие и протекают в форме острых пневмоний; иногда гематогенне распространяются по всему организму. Болезнь неконтагиозна. В доантибио-тическую эру заканчивалась летально. Высокоэффективны полиеновые антимикотические препараты.Подкожные микозы характерны для жителей сельской местности в странах с жарким климатом. Образуются подкожные абсцессы и гранулемы, которые позже переходят в хронические язвы с поражением мягких тканей и костей – мицетомы. Эпидермомикозы – хронические инфекции, обычно протекающие легко. Возбудители обитают на коже млекопитающих (изредка в почве) и передаются при контакте с больным животным или человеком. Кератомикозы – редкие легкопротекающие заболевания. Эти заболевания – разноцветный лишай (малассезиоз), черный лишай (клад осп ориоз), белая пьедра (трихоспороз) – на территории нашей страны практически не встречаются. Оппортунистические микозы – аспергиллезы, канди-дозы, мукорозы и др. – возникают на фоне иммунодефицитов.Многие из возбудителей являются представителями нормальной микрофлоры человека. Клиническая картина определяется локализацией процесса (местного или генерализованного). Исход заболевания в значительной степени обусловлен состоянием микроорганизма.

Диагностика микозов.Для диагностики микозов могут быть использованы микроскопические, микологические (культуральные), аллергические, серологические, биологические и гистологические методы исследования. В зависимости от патогенеза материалом для исследования могут быть гной, мокрота, пораженные волосы, ногти, чешуйки кожи, пунктаты костного мозга, лимфатических узлов, внутренних органов, кровь, желчь, испражнения, биоптаты тканей и т. п.

Лечение. Наряду с противогрибковой терапией крайне важно восстановление естественной непатогенной микрофлоры и повышение иммунорезистентности, а также соблюдение правил личной и общественной гигиены. общеукрепляющую витаминотерапию , направленную на активизацию иммунозащитных свойств организма (комплекс витаминов с микро- и макроэлементами, средства, стимулирующие гемопоэз — Кокарбоксилаза, Левамизол и т.д.); симптоматическую терапию.

Последнее изменение этой страницы: 2017-01-19; Нарушение авторского права страницы

источник