Меню Рубрики

К автотрофным бактериям не относятся железобактерия бактерия ботулизма

Автотрофные бактерии — это бактерии, которые могут синтезировать органические вещества из неорганических в результате фотосинтеза (фототрофные) и хемосинтеза (хемотрофные).

К фототрофным относятся пурпурные и зеленые серобактерии, которые синтезируют составные части своего тела из минеральных веществ и углекислого газа, а энергию используют за счет света.

Хемотрофные, или хемосинтетики, питаются за счет хемосинтеза, так как органические вещества синтезируются из неорганических за счет энергии, полученной при химических реакциях. К ним относятся нитрифицирующие, железо- и серобактерии. Явление хемосинтеза у бактерий открыл в 1887 г. С. Н. Виноградский.

Нитрифицирующие бактерии превращают аммонийные соли и аммиак в нитраты, усваиваемые растениями. Эти бактерии распространены в водоемах и почвах. Деятельность железобактерий состоит в том, что они окисляют закисные соединения железа в окисные. Они обитают в соленых и пресных водоемах, участвуя в круговороте железа в природе.

Серобактерии также обитают в соленых и пресных водоемах. Они окисляют сероводород и другие соединения серы.

По способу дыхания бактерии делятся на аэробов и анаэробов. Аэробы используют для дыхания свободный атмосферный кислород. Анаэробы растут и размножаются в среде без кислорода. Они получают энергию в процессе анаэробного расщепления органических веществ, накапливая различные промежуточные продукты — спирт, молочную кислоту, глицерин и другие вещества.

Обычно бактерии размножаются бесполым путем — деление материнской клетки на две дочерние. Деление проходит очень быстро. В благопри ятных условиях некоторые бактерии делятся каждые 20-30 мин. Иногда две бактерии сливаются друг с другом. При этом слиянии между ними образуется цитоплазматический мостик, по которому вещества одной клетки переходят в другую. Такой процесс напоминает половое размножение.

В неблагоприятных условиях (высыхание субстрата, холод) многие бактерии способны сжиматься, терять воду и переходить в покоящееся состояние до появления благоприятных условий. Некоторые виды бактерий в неблагоприятных условиях формируют споры. Споры обладают большой устойчивостью к различным неблагоприятным условиям. Эти формы бактерии выдерживают длительное кипячение, высушивание, замораживание, действие различных химических веществ.

Как аэробные, так и анаэробные бактерии чрезвычайно широко распространены в природе. Они встречаются в почве, воде, живых и мертвых организмах. Число бактерий в окружающей среде меняется под влиянием различных причин (инсоляции, обработки почвы и т. п.).

Количество бактерий в 1г почвы может достигать сотен миллионов и даже нескольких миллиардов и зависит от типа почв. Наименьшее их количество находится в подзолистой целинной почве. Наибольшее — в окультуренной черноземной. Бактерии могут проникать в грунт на глубину до 5 метров. Микрофлора является одним из факторов, способствующих образованию почв.

В воде различных водоемов количество бактерий бывает немного меньше, чем в почве. Так, в 1мл воды может находиться от 5 до 100 тыс. бактериальных клеток. Меньше всего бактерий встречается в воде артезианских скважин и родников, много — в открытых водоемах и реках. Больше всего бактерий обнаруживается вблизи берегов в поверхностных слоях.

Особенно сильно загрязнена вода открытых водоемов в тех местах, куда сбрасываются сточные воды. В загрязненной воде часто встречаются болезнетворные бактерии (возбудители дизентерии, брюшного тифа, паратифов, холеры, бруцеллеза и др.).

В воздухе бактерий встречается еще меньше, чем в воде. Загрязнение воздуха бактериями зависит от многих причин (от времени года, географической зоны, характера растительности, запыленности и др.). Больше всего бактерий обнаруживается в закрытых помещениях, где их может скапливаться до 300 тыс. в 1мм 3 . В сельской местности воздух чище, чем в городской. Практически отсутствуют бактерии в сосновых и кедровых лесах, так как выделяемые хвойными деревьями фитонциды убивают или подавляют рост и размножение всех видов бактерий.

На теле здоровых людей и животных, а также в различных органах всегда встречаются многие виды бактерий. Подсчитано, что на коже человека может быть огромное количество бактерий (от 85-10 9 до 1212-10 е экземпляров). Особенно много бывает бактерий, в том числе и болезнетворных, на коже человека, если он не соблюдает необходимых правил гигиены.

Открытые части тела человека загрязняются различными видами сапрофитных и патогенных (болезнетворных) бактерий значительно чаще, чем закрытые. Много бактерий обнаруживается на руках, поселяется в ротовой полости и в кишках человека. Из организма одного взрослого человека ежедневно с испражнениями выделяется около 18 млрд. бактерий.

Практически свободны от бактерий те органы здоровых людей и животных, которые не имеют связи с внешней средой (мышцы, головной и спинной мозг, кровь и др.).

источник

Часто в повседневной жизни современные люди забывают об осторожности, просто не замечая источников смертельной угрозы. Кажется, чего можно опасаться в быту? Никто не боится куска ветчины или банки овощных консервов. Да и к грибам большинство россиян относится спокойно: съедобные – значит, все в порядке. Однако в обычных продуктах питания часто таятся микроорганизмы, способные убить человека. Речь идет о возбудителях ботулизма. Так что это за невидимые враги и как обезопасить себя от них?

Главное, что нужно знать о ботулизме – эта болезнь может привести к летальному исходу. Она убивает людей целыми семьями, поскольку за общим столом все едят одно и то же. Настоящая трагедия, когда один ребенок остается сиротой или мать хоронит мужа и всех своих детей.

Слово «ботулизм» произошло от латинского botulus – колбаса, поскольку бельгийский бактериолог Эмиль ван Эрменгем в конце XIX века выделил возбудителя болезни из остатков ветчины, съеденной умершими пациентами.

Clostridium botulinum – это бактерия, которая в процессе жизнедеятельности вырабатывает токсин, отравляющий организм человека. Данный микроорганизм и его споры очень устойчивы, с ними не справиться с помощью высушивания, воздействия ультрафиолетовых лучей, замораживания, использования столового уксуса или поваренной соли, поэтому многие виды консервирования продуктов не способны обезопасить человека от болезни.

Считается, что люди умирали от ботулизма с незапамятных времен. Рост количества жертв этой болезни, пришедшийся на наше время, объясняется повсеместным распространением консервов и колбасных изделий. И хотя пища является основным источником заражения, бактерии могут попасть в организм человека через открытую рану. Особенно опасен ботулизм для грудных младенцев, чей организм еще не имеет никаких защитных механизмов для борьбы с инфекцией.

Коварство этой болезни заключается и в том, что ее сложно определить на ранней стадии. Первые симптомы ботулизма совпадают с признаками обычного пищевого отравления. Это тошнота, рвота, боль в животе, общее недомогание. А тем временем выработанный бактериями ботулотоксин быстро всасывается в кишечник и распространяется по всему организму через кровь. Болезнь поражает жизненно важные органы. Повышается температура, возникает головная боль, одышка, сухость во рту.

Не получивший должного лечения больной умирает, когда отказывает его дыхательная система. Поэтому при первых подозрениях на ботулизм следует обратиться к врачу, ведь инкубационный период болезни длится от нескольких часов до одного дня, затем состояние зараженного человека стремительно ухудшается. И ему уже невозможно будет помочь.

Чаще всего источником заражения является пища. Бактерии производят смертельный токсин, находясь в продуктах питания. Наиболее опасными из них являются консервированные грибы домашнего изготовления, именно они виновны в 70% случаев ботулизма в России. Также заразиться можно и от других «закруток». Овощные консервы, в которых содержатся свекла, фасоль и шпинат, представляют наибольшую угрозу.

Встречаются болезнетворные бактерии и в консервированы фруктах, особенно если до переработки они были перезрелыми и залежавшимися. Колбасные изделия, мясные полуфабрикаты, копченая и соленая рыба, консервированный тунец тоже могут стать источниками заражения. Clostridium botulinum находили и в продуктах, произведенных промышленными предприятиями.

А детям в возрасте до одного года врачи не рекомендуют есть мед, поскольку даже этот продукт может содержать болезнетворные споры. Они не опасны для тех, кто постарше, ведь после достижения 6-месячного возраста человеческий организм начинает справляться с подобными угрозами. Для взрослых людей угрозу представляют не сами микроорганизмы, а выработанный ими токсин.

Кроме того, споры бактерий могут попасть и в открытую рану, если ее не обработать должным образом.

Прежде всего, необходимо внимательно осматривать консервы перед употреблением. Вздувшиеся банки следует незамедлительно выбрасывать. С домашними заготовками, если вы не уверены в их безопасности, нужно поступать так же. Помните, что ботулотоксин не влияет на цвет, вкус и запах пищи, его невозможно распознать.

Споры Clostridium botulinum устойчивы ко многим обычным методам обеззараживания продуктов. Они прекрасно себя чувствуют в безвоздушной среде. Единственно возможный метод обезопасить себя и свою семью – это тщательное кипячение продуктов. Причем, если вы собираетесь заняться консервированием в домашних условиях, необходимо хорошенько прокипятить и банки, и крышки.

Бактериологи рекомендуют подвергать консервированные продукты термической обработке перед употреблением в пищу – они должны не менее 30 минут находиться под воздействием температуры выше 100 градусов. Это позволяет уничтожить образовавшийся токсин.

Ботулизм – смертельно опасное заболевание, которое нельзя лечить в домашних условиях. При первом же подозрении лучше вызвать машину скорой помощи. Пока она едет, больному можно дать слабительное средство, сделать промывание желудка, очистительную клизму. Нужно удалить из кишечника остатки инфицированной пищи с еще не впитавшимся в кровь токсином.

При своевременном обращении к врачу и должном лечении, ботулизм обычно проходит через три недели, хотя остаточные проявления слабости (головная боль, недомогание) могут преследовать человека в течение полутора месяцев после заражения. Для восстановления сил в период реабилитации пациенту могут быть полезны отвары эхинацеи, подорожника или корицы.

источник

Автотрофные бактерии — это бактерии, которые могут синтезировать органические вещества из неорганических в результате фотосинтеза (фототрофные) и хемосинтеза (хемотрофные).

К фототрофным относятся пурпурные и зеленые серобактерии, которые синтезируют составные части своего тела из минеральных веществ и углекислого газа, а энергию используют за счет света.

Хемотрофные, или хемосинтетики, питаются за счет хемосинтеза, так как органические вещества синтезируются из неорганических за счет энергии, полученной при химических реакциях. К ним относятся нитрифицирующие, железо- и серобактерии. Явление хемосинтеза у бактерий открыл в 1887 г. С. Н. Виноградский.

Нитрифицирующие бактерии превращают аммонийные соли и аммиак в нитраты, усваиваемые растениями. Эти бактерии распространены в водоемах и почвах. Деятельность железобактерий состоит в том, что они окисляют закисные соединения железа в окисные. Они обитают в соленых и пресных водоемах, участвуя в круговороте железа в природе.

Серобактерии также обитают в соленых и пресных водоемах. Они окисляют сероводород и другие соединения серы.

По способу дыхания бактерии делятся на аэробов и анаэробов. Аэробы используют для дыхания свободный атмосферный кислород. Анаэробы растут и размножаются в среде без кислорода. Они получают энергию в процессе анаэробного расщепления органических веществ, накапливая различные промежуточные продукты — спирт, молочную кислоту, глицерин и другие вещества.

Обычно бактерии размножаются бесполым путем — деление материнской клетки на две дочерние. Деление проходит очень быстро. В благопри ятных условиях некоторые бактерии делятся каждые 20-30 мин. Иногда две бактерии сливаются друг с другом. При этом слиянии между ними образуется цитоплазматический мостик, по которому вещества одной клетки переходят в другую. Такой процесс напоминает половое размножение.

В неблагоприятных условиях (высыхание субстрата, холод) многие бактерии способны сжиматься, терять воду и переходить в покоящееся состояние до появления благоприятных условий. Некоторые виды бактерий в неблагоприятных условиях формируют споры. Споры обладают большой устойчивостью к различным неблагоприятным условиям. Эти формы бактерии выдерживают длительное кипячение, высушивание, замораживание, действие различных химических веществ.

Как аэробные, так и анаэробные бактерии чрезвычайно широко распространены в природе. Они встречаются в почве, воде, живых и мертвых организмах. Число бактерий в окружающей среде меняется под влиянием различных причин (инсоляции, обработки почвы и т. п.).

Количество бактерий в 1г почвы может достигать сотен миллионов и даже нескольких миллиардов и зависит от типа почв. Наименьшее их количество находится в подзолистой целинной почве. Наибольшее — в окультуренной черноземной. Бактерии могут проникать в грунт на глубину до 5 метров. Микрофлора является одним из факторов, способствующих образованию почв.

В воде различных водоемов количество бактерий бывает немного меньше, чем в почве. Так, в 1мл воды может находиться от 5 до 100 тыс. бактериальных клеток. Меньше всего бактерий встречается в воде артезианских скважин и родников, много — в открытых водоемах и реках. Больше всего бактерий обнаруживается вблизи берегов в поверхностных слоях.

Особенно сильно загрязнена вода открытых водоемов в тех местах, куда сбрасываются сточные воды. В загрязненной воде часто встречаются болезнетворные бактерии (возбудители дизентерии, брюшного тифа, паратифов, холеры, бруцеллеза и др.).

В воздухе бактерий встречается еще меньше, чем в воде. Загрязнение воздуха бактериями зависит от многих причин (от времени года, географической зоны, характера растительности, запыленности и др.). Больше всего бактерий обнаруживается в закрытых помещениях, где их может скапливаться до 300 тыс. в 1мм 3 . В сельской местности воздух чище, чем в городской. Практически отсутствуют бактерии в сосновых и кедровых лесах, так как выделяемые хвойными деревьями фитонциды убивают или подавляют рост и размножение всех видов бактерий.

На теле здоровых людей и животных, а также в различных органах всегда встречаются многие виды бактерий. Подсчитано, что на коже человека может быть огромное количество бактерий (от 85-10 9 до 1212-10 е экземпляров). Особенно много бывает бактерий, в том числе и болезнетворных, на коже человека, если он не соблюдает необходимых правил гигиены.

Читайте также:  Заболевание ботулизмом от рыбы

Открытые части тела человека загрязняются различными видами сапрофитных и патогенных (болезнетворных) бактерий значительно чаще, чем закрытые. Много бактерий обнаруживается на руках, поселяется в ротовой полости и в кишках человека. Из организма одного взрослого человека ежедневно с испражнениями выделяется около 18 млрд. бактерий.

Практически свободны от бактерий те органы здоровых людей и животных, которые не имеют связи с внешней средой (мышцы, головной и спинной мозг, кровь и др.).

источник

Железобактерии или сульфатовосстанавливающие бактерии могут разрушать железо в металлических трубах, в результате чего содержание железа в воде повышается, особенно в условиях застоя воды в трубопроводах. Этому можно воспрепятствовать путем добавления хлора.[ . ]

Может быть, некоторые dorsatum до 11,4% Fe). Некоторые инфузории. Концентрация железа, по-види-Desraidiaceae. Некоторые водоросли из мому, более часта, чем мы это сейчас счи-Coniferva, Ocdogoniaceae. Может таем быть симбиоз с ферробактериями. Целый ряд железных руд, самых богатых скоплений железа, начиная с докембрия и кончая третичными, явно биогенного происхождения Некоторые лишайники.[ . ]

Железобактерии, в частности СаШопеИа, развиваются в виде яалета на стенке пробирки там, где для них создается оптимальная концентрация закисного железа и кислорода.[ . ]

Железобактерии окисляют находящееся в воде закислое железо, переводя его в окисное. Поскольку закислое железо растворимо в воде, а окисное— нерастворимо, процесс этот сопровождается выпадением осадка гидрата ойй-си железа. В результате, кроме закупорки труб, водопроводная вода приобретает еще и неприятную ржаво-красную окраску. Таким образом, деятельность железобактерий приводит к выпадению из воды железа, которое может попасть в водопроводную сеть или из источников водоснабжения, или непосредственно из самих труб. Однако сами по себе железобактерии никогда не являются причиной коррозии (Разумов, 1953).[ . ]

Железобактерии относятся к автотрофной группе организмов и могут разви-паться в среде, не содержащей органических веществ. На 1 г синтезированного ими клеточного вещества они окисляют 279 г железа (II) с образованием 534 г Ге(ОН)з. Соотношение между окисленным железом и ассимилированным из углекислоты углеродом (500: 1) показывает, какое большое количество F e(OH)3 образуется при автотрофном росте. Гидроокись железа (III) после отмирания бактерий служит материалом для образования болотных и озерных руд. Вода, содержащая железо (II), способна давать железистые отложения в трубах и теплообменниках при малых скоростях движения воды и небольших температурных перепадах.[ . ]

Железобактерии являются водозагрязняющпми, они потребляют только растворенное железо и не корродируют металл труб. В результате их жизнедеятельности на стенках трубопроводов отлагается студнеобразная слизь гидрата окиси железа, которая мешает движению воды по трубам.[ . ]

Клетки железобактерий покрыты чехлом, состоящим из гидроокиси железа. В древних водоемах благодаря развитию железобактерий происходило постепенное накопление железа. Эти микроорганизмы могли принимать участие в самых ранних этапах образования железных руд (например, Криворожского). Изучение круговорота железа в почвах и озерах подтверждает ведущую роль бактерий в процессах окисления и восстановления железа.[ . ]

Колонии железобактерий и продукты их жизнедеятельности заиливают трубы, затрудняют протекание по ним жидкости.[ . ]

Порядок железобактерии (Ferribacteriales).[ . ]

Развитие железобактерий происходит в щелевой стеклянной или пластмассовой проточной камере (2). Стеклянная камера делается шириной 2—3 мм при длине 200 мм и высоте 30—50 мм. Ширина пластмассовой камеры может быть увеличена до 1 см, что облегчает ее конструкцию из оргстекла. Крышка камеры делается из оргстекла и имеет 2—3 отверстия диаметром 7—8 мм. Дно камеры имеет два отверстия (3), в которые через резиновую муфту вставляют выдвигающиеся стеклянные трубочки.[ . ]

Семейство железобактерии (Ferribacteriaceae).[ . ]

Виды железобактерий (X 5000)
Виды железобактерий (X 5000)

Большая группа железобактерий для поглощения углерода использует энергию окисления соединений Fe (II) до Fe (III). Есть бактерии, окисляющие водород, соединения марганца и углерода.[ . ]

Развитие автотрофных железобактерий происходит хорошо, >если среду налить высоким слоем в пробирки, а на дно вместо железной проволоки внести свежеосажденное сернистое железо (FeS).[ . ]

Берется жидкая среда для железобактерий Лиске № 60 или дистиллированная вода и вместо солей железа добавляют марганец ® виде уксуснокислого марганца (Заварзин, 1961).[ . ]

Наиболее распространенная железобактерия — Clado-thrix dichotoma, образующая длинные ветвящиеся нити, покрытые слизистым влагалищем. В этих влагалищах откладывается гидрат окиси железа.[ . ]

Культивирование автотрофных железобактерий, относящихся к РОДУ СаШопеИа, представляет значительные затруднения, так как развитие их происходит за счет окисления кислого углекислого железа при реакции питательной среды, близкой к нейтральной. В этих условиях закисное углекислое железо на воздухе быстро окисляется до окисного, и таким образом среда становится неблагоприятной для развития железобактерий.[ . ]

Разумов А. С. 1957. К вопросу о хемосинтезе у железобактерий.[ . ]

Сульфат железа (III) быстро регенерируется железобактериями из Ре804, что значительно (в 7—18 раз) ускоряет растворение ряда минералов.[ . ]

Примером нитчатых бактерий может служить железобактерия ЬерМЬлх осИгасеае (см. рис. 4). Нити толстые, 2—9 мкм в диаметре, длина достигает нескольких миллиметров, неподвижно прикрепленные. Размножаются неподвижными конидиями или отдельными клетками. Нити окружены толстой слизистой капсулой, насыщенной гидроокисью железа, благодаря чему нити в нижней части имеют желто-охряный цвет или цвет ржавого железа. Иногда отдельные клетки нити как бы соскальзывают в сторону от главной нити, образуя подобие боковых ветвей, однако это псевдоветвление. Нитчатые бактерии БрНаегоШиэ играют отрицательную роль в очистке сточных вод при обильном развитии в аэротенках.[ . ]

Купоросованием подавляется также развитие железобактерий (доза 0,3—0,5 мг/л), серобактерий (доза до 5 мг/л), ракушек (мидий) и мшанок (доза 0,1—0,3 мг/л).[ . ]

Водопроводные трубы с обрастаниями из железобактерий
Водопроводная труба с обра-стаииями из железобактерий

Типичными представителями этой зоны являются железобактерии, которые окисляют закисное железо в окисное.[ . ]

А.-хемоавтотрофы (серобактерии, метанобактерии, железобактерии и др.) для синтеза органических веществ используют энергию окисления неорганических соединений. Вклад хемоавтотрофов в суммарную биологическую продукцию биосферы незначителен, однако эти организмы составляют основу гидротермальных экосистем в океанах.[ . ]

Наиболее общепринятым способом борьбы с обрастанием железобактериями, водорослями и др. является периодическое хлорирование сооружений. При этом применяются дозы хлора до 10 мг/л с таким расчетом, чтобы остаточное количество его составляло 3,0—3,5 мг/л. Особенно необходимы большие дозы хлора при наличии взрослых организмов, которые укрываются в плотно закрывающихся раковинах, например моллюсков (39, 40]. Для борьбы с плавающими личинками достаточно использовать обычные, применяемые при дезинфекции воды дозы хлора. Хлорирование рекомендуется сочетать с аммонизацией [41, 42].[ . ]

При значительном содержании в воде железа в ней развиваются железистые водоросли и железобактерии. При благоприятных условиях эти организмы могут сильно разрастаться в водопроводных трубах, что может повлечь за собой сужение и даже закупорку последних и вызвать этим порчу водопроводной сети.[ . ]

Освобождающаяся при этом окислении энергия используется ими для ассимиляции углекислоты. Железобактерии в очистных сооружениях встречаются в исключительных случаях.[ . ]

Одни виды этих бактерий питаются готовыми органическими веществами — гетеротрофы, другие (железобактерии) способны самостоятельно строить органические соединения из углерода углекислоты за счет использования энергии окисления неорганических веществ (железо) — автотрофы (хемоавтотрофы).[ . ]

С. Н. /Виноградский сыграл большую роль в развитии микробиологии. Им были изучены серобактерии (1887), железобактерии (1888) и нитрифицирующие бактерии (1890), исследования которых дали результаты важного научного значения. Эти бактерии обладали способностью развиваться на средах, не содержащих органических веществ, и синтезировать составные части своего тела за счет углерода угольной кислоты. Необходимую энергию эти бактерии получают за счет биохимических процессов, протекающих при окислении азота аммонийных солей в нитриты и нитраты, или за счет окисления двухвалентного железа в трехвалентное. Такой своеобразный процесс синтеза органического вещества из угольной кислоты и воды получил название хемосинтеза. Это явилось крупнейшим открытием в области физиологии микроорганизмов.[ . ]

Они называются так по субстратам окисления, которыми могут быть >1Н3, N02, СО, Н23, Б, Ре2+, Н2. Некоторые виды — облигатные хемолитоавтотрофы, другие — факультативные. К последним относятся карбоксидобактерии и водородные бактерии. Хемосинтез характерен для глубоководных гидротермальных источников.[ . ]

При содержании железа более 1 1мг/л вода приобретает бурый цвет, железистый привкус, соединения железа и железобактерии отлагаются в трубопроводах и уменьшают их пропускное сечение.[ . ]

Г. Киттнер отмечает, что в промывной воде 14 станций обезжелезнвания воды из 15 обследованных были обнаружены железобактерии. Автор полагает, что каталитический эффект от наличия железобактерий проявляется при низких значениях pH.[ . ]

К хемотрофам относятся только бактерии, окисляющие различные минеральные вещества (нитрофицирующие бактерии, железобактерии, серобактерии и др.).[ . ]

Некоторые виды бактерий окисляют нитриты и нитраты, которые иногда применяются в качестве ингибиторов коррозии. Железобактерии образуют отложения в виде окиси железа, имеющие цвет ржавчины, отложения в виде слизи или желеобразного вещества. Коррозия может принимать различные формы, например может быть сплошной, точечной. Предотвращение коррозии в системах оборотного водоснабжения, как правило, обеспечивается с помощью ингибиторов. Бхтественный процесс образования накипи на внутренних поверхностях труб до некоторой степени обеспечивает антикоррозионную защиту. Функция ингибитора состоит в образовании защитной пленки на поверхности корродирующего металла.[ . ]

Хемосинтезирующими организмами являются микроорганизмы — нитрифицирующие, серобактерии, водородные бактерии и железобактерии. Свободный азот усваивают азотфиксирующие бактерии.[ . ]

По нашему мнению, отмеченное К. Халле улучшение процесса обезжелезивания с уменьшением pH могло объясняться развитием железобактерии в толще фильтрующего слоя.[ . ]

Процесс синтеза 1 г клеточного вещества сопровождается образованием примерно 500 г гидрата окиси железа. С деятельностью железобактерий связывают образование болотных руд на дне водоемов. Нитчатые железобактерии, развиваясь в водопроводных трубах, вызывают их закупорку.[ . ]

Материалом для загрузки фильтров служит хорошо «заработанный» песок, покрытый пленкой соединений железа и свободный от железобактерий.[ . ]

Процесс хемосинтеза открыт русским ученым-микробиоло-гом С. Н. Виноградским в 1887 г. Некоторые группы бактерий — нитрифицирующие, железобактерии, серобактерии способны накапливать освобождающуюся в процессах окисления энергию и затем использовать ее для синтеза органических веществ. Процесс хемосинтеза протекает без участия хлорофилла, для его осуществления не обязательно наличие света.[ . ]

Максимальное развитие организмов обрастаний наблюдается при температуре, близкой к оптимальной для данной группы. Так, некоторые виды железобактерий развиваются при низкой температуре воды. Например, для галионеллы оптимальная температура 7—10° С. Большинство же микроорганизмов обрастаний является мезофилами с температурными оптимумами 15—20 и 35—37° С. Изменение температуры сопровождается сменой микроорганизмов обрастаний. При понижении температуры в загрязненных водах преобладают нитчатые бактерии и грибы. Летом грибы в обрастаниях практически отсутствуют. Быстрее всего развиваются в обрастаниях нитчатые и зооглейные бактерии.[ . ]

Нитчатые бактерии являются многоклеточными организмами. Нитчатые бактерии бывают свободно плавающие и прикрепленные. У некоторых нитчатых железобактерий нити покрыты слизистой оболочкой, которая представляет собой футляр или чехол, наполняющийся Ре(ОН)3.[ . ]

Все предметы, не смачиваемые водой, а также находящиеся в грунте на глубине его ниже 0,5—1,5 см, оставались свободными от налетов. В указанном слое в результате окислительной деятельности железобактерий (Crenothrix) отлагался гидрат окиси железа.[ . ]

Железо также является одним из важнейших биогенных элементов и влияет на интенсивность развития фитопланктона и качественный состав микрофлоры в водоеме. В природных водах присутствуют соединения двух- и трехвалентного железа. В результате химического и биохимического окисления (при участии железобактерий или кислорода) Ре(П) переходит в Ре(Ш), который, гидролизуясь, выпадает в осадок в виде Ре(ОН)з. В природных водах Ре(Ш), как правило, образует гидроксокомплексы. Основной формой нахождения Ре(Ш) в поверхностных водах являются комплексные соединения его с растворенными неорганическими и органическими соединениями, главным образом гумусовыми веществами. При pH >= 8,0 основной формой является Ре(ОН)3. Поэтому железо в природных водах содержится как в растворенном, так и взвешенном состоянии и донных осадках.[ . ]

К числу надежных профилактических методов борьбы с привкусами и запахами воды относятся очистка дна и берегов реки от илистой загнивающей растительности, а также очистка и дезинфекция водопроводных сооружений. Эти способы обеспечивают уничтожение организмов, которые вызывают обрастание сооружений: железобактерий (рис.. 279), серобактерий, марганцевых бактерий, полипов, моллюсков, ракообразных, мшанок, различных водорослей, взрослых насекомых и их личинок и т. д.[ . ]

Кроме вышеописанных организмов-продуцентов в 1887 г. С.Н. Виноградовым были открыты хемосинтезирующие организмы. Эти организмы в процессах синтеза органического вещества используют энергию химических связей. К этой группе продуцентов относят исключительно прокариоты: бактерии, архебактерии и отчасти сине-зеленые. В природе существуют «богатые» потенциальной энергией неорганические соединения. Химическая энергия высвобождается в процессах окисления и некоторых других. Экзотермические (т. е. выделяющие теплоту) окислительные процессы используются азот-фиксирующими (нитрифицирующими) бактериями (окисляют аммиак до нитритов и далее нитратов), железобактериями (окисление закис-лого железа до окисного), серобактериями (сероводород до сульфатов). В частности, последние населяют глубокие океанические впадины, куда не проникает свет, но где в изобилии присутствует сероводород. В этих условиях природа создала уникальные экосистемы, где эти организмы продуцируют органическое вещество в результате хемосинтеза за счет высвобождаемой при расщеплении сероводорода H2S. Как субстрат для окисления используются также метан, оксид углерода и некоторые вещества.[ . ]

Это время вообще ознаменовалось выдающимися успехами в биологии почв. Нидерландский микробиолог М. Бейеринк (1851—1931 гг.) в 1888 г. открыл клубеньковую бактерию Bacterium radiciola, фиксирующую азот воздуха па корнях бобовых растений. Так была выяснена причина и вскрыт механизм роли бобовых растений, известный еще Феофрасту и римским агрономам. В 1901 г. Бсйерппк открыл азотобактер — свободно живущую в почве аэробную бактерию, фиксирующую азот. В 1893 г. русский микробиолог С. И. Виноградский (1856—1953 гг.) выделил пз почвы анаэробную бактерию клостридиум, усваивающую молекулярный азот (Виноградский, 1952). Позднее он изучил целлюлозоразрушающие бактерии, серобактерии, железобактерии и открыл процесс хемосинтеза. Все эти открытия важны для почвоведения (Имшеиецкий, 1952; Waksman, 1953). Один из основоположников вирусологии Д. И. Ивановский (1864—1920 гг.) свои ранние исследования тоже посвятил почвенным микробам.[ . ]

Читайте также:  Может ли ботулизм пройти сам по себе

М и к о п л а з м ы. Класс Mollicutes. Порядок Му-coplasmatales. Порядок состоит из двух семейств: Mycoplasma-taceae и Acholeplasmataceae. Представители сем. Семейство содержит один род Mycoplasma, насчитывающий 36 видов. Все виды паразитируют в организме животных либо человека. Второе семейство порядка Mycoplasmatales — Acholeplsmataceae — содержит также один род Acholeplasma; все виды этого рода не требуют для своего роста наличия в среде стеринов и являются сапрофитными представителями микоплазм. Болезнетворные микоплазмы изучаются с 1898 г. и о них накоплен огромный литературный материал. В монографии В. Д. Тимакова, Г. Я- Каган [250] собрано более 1000 литературных источников о патогенных микоплазмах. Литература по сапрофитным микоплазмам (около 100 источников) обобщена в монографии В. В. Балашовой «Микоплазмы и железобактерии» [8].[ . ]

источник

Автотрофы никого не едят, органические вещества делают сами из неорганических.

  • Автофототрофы – энергию получают из света (фотосинтез). К фототрофам относятся растения и фотосинтезирующие бактерии.
  • Автохемотрофы – энергию получают при окислении неорганических веществ (хемосинтез). Например,
    • серобактерии окисляют сероводород до серы,
    • железобактерии окисляют двухвалентное железо до трехвалентного,
    • нитрифицирующие бактерии окисляют аммиак до азотной кислоты.

Сходство и различие фотосинтеза и хемосинтеза

  • Сходства: все это пластический обмен, из неорганических веществ делаются органические (из углекислого газа и воды – глюкоза).
  • Различие: энергия для синтеза при фотосинтезе берется из света, а при хемосинтезе — из окислительно-восстановительных реакций.

Гетеротрофы получают органические вещества в готовом виде, с пищей. К гетеротрофам относятся животные, грибы и большинство бактерий.

Способы питания гетеротрофов
1. Хищники – убивают жертву, а затем съедают (лев, щука, оса).
2. Паразиты – поедают живую жертву (вирус гриппа, туберкулёзная палочка, дизентерийная амеба, аскарида и т.п.)
3. Cапрофиты (сапротрофы) – питаются мертвыми организмами (личинки мясных мух, плесневые грибы, бактерии гниения).
4. Cимбионты – получают питание от другого организма на взаимовыгодной основе. Например:

  • Микориза (грибокорень) – симбиоз гриба и растения. Растение дает грибу глюкозу (которую делает при фотосинтезе), а гриб дает растению воду и минеральные соли.
  • Лишайник – симбиоз грибов и водорослей. Водоросли дают грибу глюкозу, а гриб водорослям – соли и воду.
  • Клубеньковые бактерии живут в специальных утолщениях (клубеньках) на корнях растений семейства бобовых. Растения дают бактериям глюкозу, а бактерии дают растениям соли азота, которые они получают при фиксации азота воздуха.

Выберите один, наиболее правильный вариант. Что представляет собой микориза?
1) грибокорень
2) корневую систему растения
3) грибницу, распространившуюся в почве
4) нити гриба, образующие плодовое тело

Выберите три варианта. К автотрофам относят
1) споровые растения
2) плесневые грибы
3) одноклеточные водоросли
4) хемотрофные бактерии
5) вирусы
6) большинство простейших

1. Установите соответствие между группой организмов и процессом превращения веществ, который для нее характерен: 1) фотосинтез, 2) хемосинтез
А) папоротникообразные
Б) железобактерии
В) бурые водоросли
Г) цианобактерии
Д) зеленые водоросли
Е) нитрифицирующие бактерии

2. Установите соответствие между примерами и способами питания живых организмов: 1) фототрофный, 2) хемотрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) спирогира
Б) нитрифицирующая бактерия
В) хлорелла
Г) серобактерии
Д) железобактерии
Е) хлорококк

Установите соответствие между характеристикой организмов и способом их питания: 1) фототрофный, 2) хемотрофный. Запишите цифры 1 и 2 в правильном порядке.
А) используется энергия света
Б) происходит окисление неорганических веществ
В) реакции протекают в тилакоидах
Г) сопровождается выделением кислорода
Д) присущ водородным и нитрифицирующим бактериям
Е) требует наличия хлорофилла

Установите соответствие между организмом и трофической группой, к которой его относят: 1) сапротрофы, 2) паразиты. Запишите цифры 1 и 2 в правильном порядке.
А) холерный вибрион
Б) бактерия брожения
В) туберкулезная палочка
Г) столбнячная палочка
Д) сенная палочка
Е) почвенная бактерия

Выберите один, наиболее правильный вариант. Плесневые грибы по способу питания относят к
1) гетеротрофам
2) паразитам
3) хемотрофам
4) симбионтам

1. Установите соответствие между примером и способом питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в правильном порядке.
А) цианобактерии
Б) ламинария
В) бычий цепень
Г) одуванчик
Д) лисица

2. Установите соответствие между организмом и типом питания: 1) автотрофное, 2) гетеротрофное. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) сосна сибирская
Б) кишечная палочка
В) амебa человеческая
Г) пеницилл
Д) хвощ полевой
Е) хлорелла

3. Установите соответствие между одноклеточным организмов и типом питания, который для него характерен: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) холерный вибрион
Б) железобактерия
В) малярийный плазмодий
Г) хламидомонада
Д) цианобактерия
Е) дизентерийная амёба

4. Установите соответствие между примерами и способами питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) спирогира
Б) бычий цепень
В) хвощ полевой
Г) серобактерия
Д) зеленый кузнечик

5. Установите соответствие между примерами и способами питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) хлорелла
Б) лягушка
В) шампиньон
Г) папоротник
Д) ламинария

СОБИРАЕМ 6:
А) мукор
Б) нитрифицирующие бактерии
В) трутовик

Выберите один, наиболее правильный вариант. По способу питания подавляющее большинство бактерий
1) автотрофы
2) сапротрофы
3) хемотрофы
4) симбионты

1. Установите соответствие между организмом и способом его питания: 1) фототрофный, 2) гетеротрофный, 3) хемотрофный. Запишите цифры 1, 2 и 3 в правильном порядке.
А) спирогира
Б) пеницилл
В) серобактерия
Г) цианобактерия
Д) дождевой червь

2. Установите соответствие между организмами и типами их питания: 1) фототрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) лямблия
Б) гриб спорынья
В) хламидомонада
Г) цианобактерия
Д) сфагнум

Установите соответствие между особенностью обмена веществ и группой организмов, для которых она характерна: 1) автотрофы, 2) гетеротрофы
А) выделение кислорода в атмосферу
Б) использование энергии, заключенной в пище, для синтеза АТФ
В) использование готовых органических веществ
Г) синтез органических веществ из неорганических
Д) использование углекислого газа для питания

Выберите один, наиболее правильный вариант. Какие организмы преобразуют энергию окисления неорганических веществ в макроэргические связи АТФ?
1) фототрофы
2) хемотрофы
3) гетеротрофы
4) сапротрофы

Выберите один, наиболее правильный вариант. Сходство хемосинтеза и фотосинтеза состоит в том, что в обоих процессах
1) на образование органических веществ используется солнечная энергия
2) на образование органических веществ используется энергия, освобождаемая при окислении неорганических веществ
3) в качестве источника углерода используется углекислый газ
4) в атмосферу выделяется конечный продукт — кислород

Выберите один, наиболее правильный вариант. Заболевание туберкулезом легких у человека вызывает
1) вирус
2) плесневый гриб
3) бактерия-паразит
4) бактерия-сапротроф

Выберите один, наиболее правильный вариант. Какой организм по способу питания относят к гетеротрофам?
1) хламидомонаду
2) ламинарию
3) пеницилл
4) хлореллу

Выберите один, наиболее правильный вариант. Микориза гриба представляет собой
1) грибницу, на которой развиваются плодовые тела
2) множество вытянутых в длину клеток
3) сложные переплетения гифов
4) сожительство гриба и корней растений

Установите соответствие между организмами и их типом питания: 1) сапротроф, 2) паразит. Запишите цифры 1 и 2 в правильном порядке.
А) стафилококк
Б) молочнокислая бактерия
В) дизентерийная палочка
Г) амеба
Д) вирус гриппа
Е) дрожжи

Установите соответствие между характеристикой и способом питании организмов: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в правильном порядке.
А) источником углерода служит углекислый газ
Б) сопровождается фотолизом воды
В) используется энергия окисления органических веществ
Г) используется энергия окисления неорганических веществ
Д) поступление пищи путем фагоцитоза

Установите соответствие между особенностью питания организма и группой организмов: 1) автотрофы, 2) гетеротрофы. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) захватывают пищу путём фагоцитоза
Б) используют энергию, освобождающуюся при окислении неорганических веществ
В) получают пищу путём фильтрации воды
Г) синтезируют органические вещества из неорганических
Д) используют энергию солнечного света
Е) используют энергию, заключённую в пище

Хемосинтезирующие бактерии способны получать энергию из соединений всех элементов, кроме двух. Определите два элемента, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) Азот
2) Хлор
3) Железо
4) Магний
5) Сера

1. Определите два организма, «выпадающих» из списка автотрофных организмов, и запишите цифры, под которыми они указаны.
1) Амеба обыкновенная
2) Венерина мухоловка
3) Пинуллярия зеленая
4) Инфузория туфелька
5) Спирогира

2. Все приведённые ниже организмы, кроме двух, по типу питания относят к автотрофам. Определите два организма, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) хламидомонада
2) хвощ полевой
3) подосиновик
4) кукушкин лён
5) дрожжи

3. Все приведённые ниже организмы, кроме двух, по типу питания относят к автотрофам. Определите два организма, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) серобактерия
2) спирогира
3) мухомор
4) сфагнум
5) бактериофаг

Установите соответствие между примерами взаимоотношений организмов и их типами: 1) Мутуализм, 2) Конкуренция, 3) Паразитизм. Запишите цифры 1, 2 и 3 в правильном порядке.
А) Корни дерева и мицелий гриба
Б) Бычий цепень и корова
В) Рак отшельник и актиния
Г) Волк и лиса
Д) Омела и дерево
Е) Рысь и россомаха

Установите соответствие между организмами и типом межвидовых отношений, в которые они вступают: 1) хищничество, 2) конкуренция. Запишите цифры 1 и 2 в правильном порядке.
А) циклоп и гидра
Б) жук-плавунец и головастик
В) личинка стрекозы и малёк рыбы
Г) инфузория-туфелька и бактерии
Д) белка и клёст
Е) карась и карп

1. Установите соответствие между видом организмами и типом отношений: 1) паразит–хозяин, 2) хищник–жертва. Запишите цифры 1 и 2 в правильном порядке.
А) жук-плавунец и малёк рыбы
Б) щука и карась
В) чесоточный зудень и человек
Г) лисица и мышь
Д) свиной цепень и свинья
Е) бактериофаг и бактерия

2. Установите соответствие между парами животных и типами отношений, которые эти пары иллюстрируют: 1) паразит – хозяин, 2) хищник – жертва. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) гидра – дафния
Б) рысь – заяц-беляк
В) аскарида – человек
Г) чёрный коршун – лесная мышь
Д) таёжный клещ – обыкновенная лиса

3. Установите соответствие между организмами и типом их взаимотношений: 1) паразитизм, 2) хищничество. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) крот – дождевой червь
Б) клоп-черепашка – пшеница
В) божья коровка — тля
Г) блоха — крыса
Д) синий кит — криль
Е) лисица — эхинококк

ФОРМИРУЕМ 4:
А) минога — скумбрия
Б) гусеница — наездник

Установите соответствие между параметрами адаптаций и типами отношений при эксплуатации: 1) растение – фитофаг, 2) жертва – хищник, 3) хозяин – паразит. Запишите цифры 1-3 в правильном порядке.
А) эксплуатируемый организм имеет колючки
Б) организм-эксплуататор имеет развитые обоняние, зрение, способен маскироваться, догонять
В) эксплуатируемый организм имеет развитый иммунитет, способен сбрасывать зараженные части тела
Г) у организма-эксплуататора совершенный сложный тип развития
Д) эксплуатируемый организм способен убегать, прятаться, активно защищаться

Выберите один, наиболее правильный вариант. Бактерии гниения являются по способу питания организмами
1) хемотрофными
2) автотрофными
3) гетеротрофными
4) симбиотическими

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Микоризу образуют
1) береза и подберезовик
2) береза и березовая чага
3) осина и подосиновик
4) сосна и боровик
5) кукуруза и головня
6) рожь и спорынья

1. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Примерами симбиотических отношений являются:
1) гриб трутовик и береза
2) росянка и насекомые
3) клубеньковые бактерии и бобовые растения
4) целлюлозоразрушающие бактерии и растительноядные животные
5) каннибализм у хищных рыб
6) актиния и рак-отшельник

2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. В экосистеме смешанного леса симбиотические отношения устанавливаются между
1) берёзами и елями
2) берёзами и грибами-трутовиками
3) тлями и муравьями
4) ежами и насекомоядными птицами
5) берёзами и подберёзовиками
6) черемухой и опыляющими её мухами

Установите последовательность этапов круговорота азота в природе, начиная со свободного азота атмосферы. Запишите соответствующую последовательность цифр.
1) поглощение атмосферного азота бактериями
2) превращение свободного азота в связанные формы
3) потребление связанного азота животными
4) денитрификация связанного азота бактериями
5) усвоение соединений азота растениями

Найдите три ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны. (1) Бактерии – прокариоты, наследственная информация которых заключается в одной линейной молекуле ДНК. (2) Все бактерии по типу питания являются гетеротрофами. (3) Азотфиксирующие бактерии обеспечивают гниение органических остатков в почве. (4) К группе азотфиксаторов относят клубеньковых бактерий, поселяющихся на корнях бобовых растений. (5) Нитрифицирующие бактерии участвуют в круговороте азота. (6) Среди паразитических бактерий хорошо известны холерный вибрион, туберкулёзная палочка, являющиеся возбудителями опасных заболеваний человека. (7) Сапротрофные бактерии питаются органическими остатками.

Установите соответствие между организмами и типами их взаимоотношений: 1) симбиоз, 2) паразит – хозяин, 3) хищник – жертва. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) гидра и дафния
Б) личинка божьей коровки и тля
В) щука и карась
Г) носорог и воловья птица
Д) чесоточный зудень и человек

Читайте также:  Вакцина против ботулизма человека

Установите соответствие между организмами и типами их отношений: 1) паразитизм, 2) симбиоз. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) трутовик и береза
Б) ель и белый гриб
В) клещ и лось
Г) малярийный плазмодий и комар
Д) горох и клубеньковые бактерии

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Отношения хищник-жертва устанавливаются между
1) майским жуком и насекомоядными птицами
2) собакой и блохами
3) зайцем и лисой
4) лососем и миногой
5) свиньей и человеком
6) человеком и свиным цепнем

источник

Железобактерии участвуют в окислении железа и марганца – это факт, достоверно известный науке. Остальные данные про эти загадочные организмы до конца не изучены, так как все исследования проводились лишь на основе природного материала или других накопительных культур.

С.Н. Виноградский впервые выделил и описал микробов, живущих в водной среде и почве и использующих для осуществления питания энергию света. Для этого они используют способ окисления неорганических соединений железа.

И хоть это не доказано экспериментальным путем, но некоторые виды железобактерий являются хемотрофами и фотосинтезирующими, окисляют двухвалентное железо до трехвалентного. Все же ученые склоняются к тому, что большинство железобактерий относятся к гетеротрофам, использующим для питания углерод, освобожденный после окисления соединений закиси железа. Железо откладывается на поверхности самих клеток в виде окиси гидрата.

Эти микроорганизмы, обитая в природе, являются жителями почвы, пресных, соленых или кислых источников, болот.

Железобактерии условно можно разделить на две группы:

  1. Не использующие энергию, выделенную при окислении железа, для жизни. Это нитчатые железобактерии и свободноживущие одноклеточные микоплазмы.
  2. Получающие энергию в результате окисления железа ацидофильные железобактерии.

Данные виды обитают в природе в средах с наличием солей железа, имеют палочковидную форму и жгутики, позволяющие двигаться. Осуществляя питание способом хемосинтеза (окисляя неорганические соединения в органические), железобактерии и их «товарищи» серобактерии сосуществуют вместе. Способны образовывать нити без разветвлений длиной до 1 см.

Особенностью нитчатых железобактерий является наличие слизистой оболочки, называемой влагалищем. В ней собирается окись железа или марганца. Они могут свободно покидать цилиндрическую оболочку, после чего создают новую. Оболочки – это скопления ржавых пятен, вторично загрязняющие поверхность воды, почву. Отмершие бактерии образуют большие залежи руд на дне болот.

Могут прикрепляться к субстрату и таким способом путешествовать, плавая по водоему. Особенно большое количество железобактерий наблюдается в водах, куда производятся выбросы химических производств, содержащие закиси солей железа. Очень часто поселяются в трубах водопровода, являясь виновниками их закупорки.

Этот вид железобактерий состоит из бобовидных клеток, которые на своей вогнутой стороне откладывают гидроокись железа. Не имеют клеточной стенки, зато у них есть фибриллы (длинные белковые выросты, напоминающие жгутики). Микоплазмы ведут колониальный образ жизни, по способу питания они сапротрофы, то есть разрушают отмершие останки других организмов.

Thiobacillus ferrooxidan относится к тионобактериям, может также окислять восстановленные соединения серы, является одновременно и серобактерией, в отличие от железобактерии Leptospirillum ferooxidans.

Бактерии широко распространены в природе: в почве, в месторождениях сульфида, в источниках и кислых озерах с высоким содержанием закиси железа. Обитают в местах залежей угля и золотых руд. Для людей совершенно безвредны, устойчивы к низким температурам.

Способны окислять оксиды металлов, используя углекислый газ в качестве источника углерода. В средах с содержанием кислорода процесс выщелачивания металлов ускоряется. Поэтому для искусственного обогащения руд применяют способ орошения отвалов руды специальными серными растворами, содержащими двухвалентное железо, а также дополнительную подачу воздуха.

Подобным способом в мире обогащают около 5% общей добытой меди и получают уран.

Железобактерии, прикрепляясь к стенкам труб, образуют на них пленку, которая загрязняет воду, поступающую в дома. Также они могут закупоривать душевые разбрызгиватели, сетчатые смесители кранов, фильтры водонагревателей, системы туалетных бачков.

Железобактерии – типичные жители почвы, поэтому содержание их в скважинах питьевой воды неизбежно. Но высокая концентрация железа достигается после контакта ионов железа с кислородом, поэтому верхняя часть скважины должна быть герметичной. Наличие воздухонепроницаемой мембраны в резервуаре также не дает воздуху соприкасаться с водой.

Для обработки воды используют специальное устройство – фосфатный дозатор, который очищает ее аналогично хлорированию. Фосфат не дает окислиться ионам железа.

Железобактерии являются одновременно как помощниками человека, образуя залежи полезных марганцевых и железных руд на дне водоемов и болот, используемых в металлургической промышленности, так и вредителями, виновниками плохого качества воды, загрязняющими почву, водопроводную систему и канализацию.

источник

Известно значительное число микроорганизмов, прямо или косвенно участвующих в окислении железа. Некоторые из них были открыты еще в середине прошлого века, но до сих пор в виде чистых культур удалось получить лишь немногие. Поэтому сведения о биологии большинства таких форм весьма ограничены и основаны на изучении либо только природного материала, либо накопительных культур.

На основании имеющихся данных можно, однако, заключить, что многие из них являются гетеротрофами. К числу таковых принадлежат микроорганизмы, окисляющие комплексные органические соединения железа. В результате этого железо в виде гидрата окиси откладывается на поверхности клеток. Такие микроорганизмы встречаются и в водоемах, и в почве. К числу водных форм относятся Siderocapsa, Blastocaulis, Neumanniella, Ochrobium и некоторые другие. В почве в разложении гума-тов железа, видимо, участвуют почкующиеся бактерии родов Hyphomicrobium, Pasteuria и Seliberia stellata. Описаны также разнообразные по морфологии микроорганизмы, которые, судя по ряду данных, могут окислять неорганические соединения железа в болотах, ручьях, железистых источниках, дренажных трубах, в озерах и других водоемах с образованием охристых осадков. Некоторые встречаются и в почве. Именно такие формы были названы железобактериями. К ним принадлежат представители нитчатых бактерий (Leptothrix, Toxo-thrix, Crenothrix), а также Gallionella, Sidero-coccus, Methallogenium. Наиболее широко распространены нитчатые бактерии, называемые Leptothrix ochracea. По описаниям палочковидные клетки этой бактерии собраны в цепочки и окружены влагалищем, где откладывается гидрат окиси железа. Благодаря наличию жгутиков клетки способны к движению и могут покидать влагалище. Обычно встречается в ручьях, у выхода железистых источников на болотах, образуя скопления в виде ржавых пятен.

Хотя еще С. Н. Виноградский (1888) показал, что L. ochracea превращает закисное железо в окисное, способность этих бактерий к авто-трофному образу жизни не доказана и все данные о биологии основаны, по существу, на исследовании природного материала. Окончательно не решено даже, является Leptothrix самостоятельным родом или это представители Sphaerotilus, гетеротрофной нитчатой бактерии, которая способна откладывать вокруг клеток окислы железа. Кроме L. ochracea, описан ряд других видов Leptothrix, но сведения о них также весьма ограничены.

Второй организм, который давно привлекает к себе внимание в связи с особенностями морфологии и физиологических свойств, — это Gallionella. Выделяют несколько видов, наиболее известен Gallionella ferruginea. Согласно описаниям Н. Г. Холодного, Gallionella состоит из бобовидных отдельных клеток, которые выделяют с вогнутой стороны гидрат окиси железа, образующего переплетенные нити. Более поздние работы с использованием электронной микроскопии подтвердили, что в культурах Gallionella встречаются вибриоидные клетки со жгутиками. От таких клеток могут отходить стебельки в виде нитей, состоящих из отдельных волокон. Обнаружено также наличие на нитях расширений (мембранных мешков) и мелких округлых телец, похожих на почки. Химические реакции доказывают наличие в нитях белка. Все это говорит о том, что данные образования не являются чисто гидратом окиси железа, а, видимо, имеют «живые элементы». Работы последних лет позволяют предполагать, что под названием Gallionella описаны комплексные культуры, один из компонентов которых, видимо, относится к микоплазмам. Очевидно, вопрос о природе Gallionella будет совсем решен после выделения несомненно чистых культур. Пока таковых не имеется, хотя накопительные культуры получить довольно просто. Для этого используют минеральную среду, содержащую сульфид железа или металлическое железо, и обеспечивают снабжение углекислотой. Тот факт, что Gallionella растет на такой среде и фиксирует 14 С02, говорит о возможности ее существования в автотрофных условиях.

Для окончательных выводов необходимы дальнейшие исследования.

Сведения о других микроорганизмах, перечисленных выше, еще более ограничены. Есть основания полагать, что в число железобактерий попало немало микроорганизмов, для которых процесс окисления железа не имеет какого-либо физиологического значения, но они могут концентрировать железо в слизи, окружающей клетки, когда в результате изменения условий оно окисляется химическим путем и переходит в нерастворимую форму. Такая способность обнаружена у многих нитчатых бактерий и сине-зеленых водорослей. Описаны также случаи отложения окислов железа на водной растительности.

Однако известны действительно хемоавтотрофиые микроорганизмы, которые получают энергию в результате окисления записного железа. Таковым является Thiobacillus ferrooxidans. Как уже указывалось выше, по своей морфологии и физиологическим свойствам этот микроорганизм, несомненно, принадлежит к к тионовым бактериям. Th. ferrooxidans в отличие от других представителей тиобацилл способен окислять соединения не только серы,


Рис. 141. Цепь переноса электрона при окислении железа у Thiobacillus ferrooxidans.

но и двухвалентного железа. Клетки этой грамотрицательной бактерии имеют вид коротких палочек (0,3—0,4 X 0,7 — 1,7 мкм) с одним полярным жгутиком. Размножаются поперечным делением. Оптимальное значение рН для роста 2- , S204 2- , S406 2- , S03 2- ), в том числе сульфиды тяжелых металлов. Поэтому широко распространен в месторождениях различных сульфидных минералов. Окисление Т. ferrooxidans двухвалентного железа происходит согласно уравнению

4Fe 2+ +4H + +6S04 2- +02 -> 2Fe2(S04)3+ 2Н20, дельта F = —46,2*103 дж.

Поскольку реакция сопровождается малым выходом энергии (46,2 -103 дж/г окисленного железа), то для поддержания роста бактериям приходится окислять весьма большие количества железа. Так, при образовании 1 г сырой биомассы происходит окисление 500 г сернокислого железа. Образование Т. ferrooxidans АТФ сопряжено с функционированием электрон-транспортной дыхательной цепи, которая, как и у ряда других хемоавтотрофов, укорочена. Это связано с тем, что Fe2+ имеет весьма высокий положительный потенциал (Е — 0= 0,77 В). Полагают, что сначала железо образует с фосфатом комплексное соединение, имеющее более низкий окислительно-восстановительный потенциал (Е 2- 0 = О В), и лишь затем передает электрон в дыхательную цепь (рис. 141) на уровне либо убихинона, либо цитохрома. Поэтому образование восстановленного НАД Т. ferrooxidans происходит в результате действия системы обратного переноса электрона с затратой энергии.


Рис. 142. Схема круговорота серы.

Т. ferrooxidans обычно выращивают на минеральных средах, содержащих углекислоту и восстановленные соединения серы или соли двухвалентного железа. Лишь недавно появились сообщения о способности некоторых штаммов этих бактерий расти на среде с глюкозой в отсутствие неорганических окисляемых субстратов. Однако способность Т. ferrooxidans к переключению на такой гетеротрофный метаболизм требует дальнейшего изучения и проверки.

До последнего времени не было известно других бактерий, способных, подобно Т. ferrooxidans, расти в автотрофных условиях, окисляя двухвалентное железо. Однако сейчас такая возможность показана еще у двух микроорганизмов. Один из них, как уже указывалось выше, принадлежит к дольчатым бактериям Sulfolobus и способен, кроме железа, окислять молекулярную серу. Второй микроорганизм представляет собой небольших спирилл и растет на минеральной среде, окисляя железо. Он назван Leptospirillum ferrooxidans. Есть также сообщения, что такой способностью обладают некоторые представители рода Metallogenium.

Имеющиеся данные позволяют заключить, что автотрофные и некоторые гетеротрофные микроорганизмы принимают участие в превращениях железа в природе, в частности в образовании железистых отложений, из которых формируются осадочные железные руды в болотах, озерах и других водоемах.

Весьма существенное значение имеет также деятельность Т. ferrooxidans в месторождениях сульфидных руд. Способность Т. ferrooxidans окислять практически все известные сульфидные минералы находит практическое применение в гидрометаллургии.

Тионовые бактерии принимают также активное участие в круговороте серы (рис. 142).

В заключение следует отметить, что некоторые микроорганизмы способны окислять и концентрировать вокруг себя не только железо, но и марганец (Mn +2 -> Мn +4 ). Таким свойством обладает ряд нитчатых бактерий, а именно: некоторые представители Leptothrix (например, L. discophora), Crenothrix polyspora, Lieskeela discophora, а также Naumannilla, Kuznezovia polymorpha, Blastocaulis, Siderocapsa и Hyphomicrobium. Известны формы, окисляющие только марганец. К числу таковых принадлежат некоторые почкующиеся бактерии из родов Hyphomicrobium и Metallogenium. Один из них, Metallogenium symbioticum, выделенный Г. А. Заварзиным, растет в симбиозе с грибом и, как установлено Г. А. Дубининой, относится к микоплазмам. К этому организму, видимо, близок Caulococcus manganifer, также окисляющий марганец. Кроме того, показано, что окислять марганец могут разные почвенные грибы и ряд бактерий таких родов, как Bacillus, Pseudomonas, Achromobacter, Flavobacterium, Corynebacterium, Sarcina, Escherichia и др.

Часто, однако, окисление марганца происходит только в смешанных или симбиотиче-ских культурах.

По всем данным микробиологические процессы имеют большое значение в превращениях марганца и в почве и в разных водоемах, где нередко происходит отложение марганца и образование железомарганцевых конкреций. Однако ни для одного марганецокисляющих микроорганизмов не показана способность к росту в автотрофных условиях. И хотя предположения о возможности получения ими энергии при окислении марганца

4MnC03+02 -> 2Mn203+2C02, дельта F = — 31,9 * 10 4 Дж

высказывались, они остаются не доказанными.


Таблица 44. Палочковидные бактерии (по) и бактероиды из клубеньков чины, вики, акации (увел, х 6000—10 000).


Таблица 45. Бактериоз пшеницы: 1,2 — базальный; 3 — желтый слизистый.

источник