Меню Рубрики

Нейтрализующие антитела к вирусу бешенства

Методы выявления антигенов. При бешенстве для экспресс-диагностики можно использовать методы флуоресцирующих антител (МФА), реакции преципитации (РП) в агаровом геле, методы иммуноферментного анализа (ИФА), полимеразной цепной реакции (ПЦР). Для прижизненной диагностики бешенства у человека требуется несколько тестов.

Определение антител к антигенам вируса бешенства. Выявление антител в сыворотке крови или в цереброспинальной жидкости — важный метод диагностики. Серологическое исследование рабиес-специфических антител проводится в сыворотке крови для определения пред- и постэкспозиционной вакцинации и определения времени бустерной иммунизации с целью повышения иммунного ответа.

Выделение вируса. Для выделения и идентификации вируса используют метод биопробы на белых мышах. Исследуемый материал суспендируют в физиологическом растворе, содержащем антибиотики и эмбриональную сыворотку крупного рогатого скота. Суспензия вводится интрацеребрально белым мышам массой 5–6 г. Для доказательства развития инфекции за мышами ежедневно наблюдают до 30-го дня после инокуляции. Мыши, у которых за этот период развивается заболевание, немедленно подвергаются эвтаназии, и ткани мозга исследуются методом прямой МФА.

Преимущество данного подхода состоит в возможности определить малые количества вируса бешенства в материале. Недостаток метода — необходимость многодневного (7–18 суток) ожидания между инокуляцией и проявлением первых признаков заболевания. Для сокращения инкубационного периода применяют мышей-сосунков. Для экспресс-диагностики можно использовать мышей в возрасте менее 3 дней: у мышей, забитых через 3 дня, уже выявляется антиген вируса в мозге, который можно выявить методом МФА.

Такой метод выделения вируса практикуется в качестве подтверждающего диагностического теста при отрицательных результатах по выявлению антигена и телец Бабеша – Негри и в случае укуса человека подозрительным на бешенство животным. Он обеспечивает надлежащую чувствительность и специфичность, т. е. расценивается на уровне диагностической значимости метода прямой иммунофлуоресценции. Кроме того, этот метод является основным для идентификации вариантов вируса и перспективен для разработки диагностических реагентов.

Выделение и идентификация вируса на культуре клеток. Основным недостатком выделения вируса при инфицировании лабораторных животных является длительность метода. Избежать этого можно при использовании культур клеток. Обычно для этих целей используют культуру клеток нейробластомы мышей, если нужно исследовать ткани головного мозга. Мозг суспендируют в культуральной питательной среде, суспензию наносят на монослой культуры клеток и инкубируют от одного до нескольких дней.

Чувствительность данной культуры к вирусу можно повысить обработкой ее ДЕАЕ декстраном. Монослой клеток затем отмывают, фиксируют на холоде ацетоном или смесью формалина с метанолом и исследуют методом иммунофлюоресценции. Если животное было инфицировано вирусом бешенства, то в монослое культуры клеток выявляются цитоплазматические включения антигена вируса бешенства.

Показано, что на клетках мышиной нейробластомы линии Na C1 300 в сочетании с МФА антиген вируса бешенства можно выявить через 2 дня. Чувствительность метода сравнима с методом изоляции вируса на мышах.

Хотя вирус бешенства обладает облигатной нейропатогенностью in vivo, он способен инфицировать широкий круг клеток-хозяев in vitro, что можно использовать для исследования других тканей и органов на наличие вируса бешенства. Установлено, что вирус бешенства размножается в клетках ВНК-21 и Vero, в первичных клетках куриных эмбрионов или почек хомяка. Показано, что адсорбция вируса и внедрение его в клетку происходят в течение 7 часов. Через 24–48 часов внутри клетки образуются новые вирусные частицы, через 72 часов происходит почкование их из клеточной оболочки в межклеточное пространство.

Для экспресс-диагностики бешенства могут быть использованы:

а) метод МФА — для выявления антигена вируса бешенства в отпечатках роговицы или заднего отдела шеи больного, содержащего луковицы волос;
б) метод ПЦР — для выявления РНК вируса в биоптатах тканей, слюне, спинномозговой или слезной жидкости;
в) метод ИФА — для выявления специфических антител (антигена) у больных с типичным или атипичным течением.
г) метод биопробы — для выделения вируса на ранних этапах заболевания или для выявления антител в крови или спинномозговой жидкости на поздних стадиях заболевания. Для экспресс-диагностики используется комплексный метод (биопроба + МФА), заключающийся в заражении исследуемым материалом 2-дневных новорожденных мышей и исследования их мозга на 3–4-е сутки в МФА.

Выбор методов прижизненной диагностики в значительной мере зависит от стадии болезни: метод, основанный на выявлении антигенов, как правило, обладает высокой чувствительностью в конце инкубационного периода, в течение первых нескольких дней заболевания, в то время как вируснейтрализующие антитела обычно появляются в спинномозговой жидкости и сыворотке крови после 7-10 дней от начала болезни.

Реакция иммунофлюоресценции. Метод основан на использовании антител, связанных с красителем, например, флюоресцеинизотиоцианатом. РИФ широко применяется для выявления вирусных антигенов в материале больных и для быстрой диагностики.

Метод обладает наиболее высокой степенью чувствительности, он положен в основу экспресс-диагностики и позволяет обнаруживать вирусные антигены в течение нескольких часов

Основные достоинство МФА: быстрота выполнения, высокая специфичность (100%). Затрачиваемое время на диагностику заболевания с его помощью — менее одного дня. Применяются прямой и непрямой варианты МФА.

Прямая иммунофлуоресценция остается наиболее предпочитаемым методом диагностики бешенства. Предметные стекла, содержащие мазки-отпечатки тканей мозга, или стекла с монослоем культуры тканей фиксируют в ацетоне в течение 1–4 часов. Затем препараты высушивают и обрабатывают флуоресцирующими поликлональными антинуклеокапсидными антителами (иммунофлуоресцентный реагент).

Этот реагент представляет собой конъюгат, приготовленный из специфических поликлональных антител IgG класса к нуклеокапсидному антигену вируса и флуоресцеина изоцианата (ФИТЦ). Специфические антитела получают путем гипериммунизации животных (кроликов, хомяков или лошадей) смесью эпитопов нуклеокапсида вируса.

В настоящее время для этих целей все шире используют мышиные моноклональные антитела к нуклеокапсиду вируса бешенства. После 30-минутной инкубации при 37° С диагностические препараты многократно отмывают физиологическим раствором и дистиллированной водой.

Антитела, меченные ФИТЦ, фиксируются только в местах локализации вирусных нуклеопротеидных антигенов. Затем препараты высушивают на воздухе и исследуют методом световой микроскопии, используя в качестве источника света ксеноновую лампу и соответствующий фильтр.

При непрямом варианте антиген сначала соединяют с неокрашенной специфической иммунной сывороткой. Затем на образовавшиеся нефлуоресцирующие комплексы антиген-антитело воздействуют меченой флуорохромом иммунной сывороткой, содержащей антитела к белкам специфической сыворотки. Непрямой вариант МФА наряду с выявлением антигена позволяет количественно определять антитела в исследуемой сыворотке путем соответствующего ее разведения.

Меченые ФИТЦ образования в клетках разных тканей выявляются в виде желто-зеленого флуоресцентного окрашивания на темном фоне (в виде округлой или овальной формы внутрицитоплазматических включений).

Иммуноферментный анализ. Метод основан на принципе сорбции белков на твердой фазе с последующим образованием комплексов антиген-антитело, выявляемых субстрат-индикаторным раствором. Добавляемый в лунки антиген специфически связывается с антителами. На слой антигена наносят исследуемые сыворотки в нужных разведениях. При наличии в них специфических антител последние связываются с антигеном. Для выявления связывания на слой антител наносят иммуноглобулин против глобулинов сыворотки людей, коньюгированный с пероксидазой хрена. Количество сорбирующего коньюгата пропорционально количеству связавшихся с антигеном антител сывороток людей. Это можно определить, используя индикаторный раствор (ортофенилилендиамин + перекись водорода), компоненты которого в результате действия пероксидазы коньюгата окрашивают жидкость в коричнево-желтый цвет. При обследовании неясных случаев применение ИФА дополнительно к методам РП или РСК позволяет увеличить достоверность лабораторной диагностики бешенства, благодаря большой чувствительности этого метода. Метод позволяет обнаруживать инфекционные и дефектные частицы.

Для определения антирабических антител в процессе вакцинации можно применять непрямой метод ИФА, используя в качестве антигена очищенный вирус, а для определения антител класса IgG в человеческой сыворотке — А-белок стафилококка, связанный с пероксидазой хрена. Результаты ИФА сравнимы с полученными в тестах вирусной нейтрализации на мышах. Метод позволяет выявлять присутствие IgМ в начале процесса иммунизации.

Иммуноферментные методы — весьма перспективны для выявления нуклеокапсидного антигена вируса при посмертной диагностике в тканях головного мозга. В их числе, например, быстрый иммуноферментный метод диагностики бешенства, основанный на приготовлении плашек сенсибилизированных антителами IgG изотипа к нуклеокапсиду первого серотипа, разведенных в карбонатном буфере.

Материал для исследования гомогенезируют в буфере или культуральной среде, осветляют центрифугированием, вносят в лунки и инкубируют в плашках. Фиксированный специфическими антителами нуклеокапсидный антиген идентифицируют добавлением пероксидазного конъюгата с антинуклеокапсидными противорабическими антителами иной видоспецифичности и хромогенного субстрата. Чувствительность метода составляет 0,8–1,0 нг/мл.

Этим методом можно выявлять антигены вирусов различных серотипов. Применение конъюгатов нуклеокапсидспецифичных антител, меченых биотином, повышает чувствительность метода до 0,1–0,2 нг/мл.

Методом ИФА успешно выявляется антиген нуклеокапсида [139], но материал, даже разложившийся, не должен фиксироваться формалином.

Метод полимеразной цепной реакции. Для экспресс-диагностики вируса бешенства и идентификации лиссавирусов наиболее удобен метод полимеразной цепной реакции (ПЦР). Метод ПЦР — самый надежный и быстрый для выделения вирионной РНК из любых проб, содержащих вирус в низкой концентрации. С его помощью можно создать много копий РНК вируса. Этот метод используется для подтверждения результатов МФА и для определения вируса в слюне, луковицах волос заднего отдела шеи и головы.

ПЦР основана на принципе естественной репликации ДНК. Суть метода заключается в многократном повторении циклов синтеза (амплификации) вирусоспецифической последовательности ДНК с помощью термостабильной Taq ДНК-полимеразы и двух специфических затравок, так называемых праймеров.

Каждый цикл состоит из трех стадий с различным температурным режимом. В каждом цикле удваивается число копий синтезируемого участка. Вновь синтезированные фрагменты ДНК служат в качестве матрицы для синтеза новых нитей в следующем цикле амплификации, что позволяет за 25–35 циклов наработать достаточное число копий выбранного участка ДНК для ее определения, как правило, с помощью электрофореза в агарозном геле.

Особенно высокая чувствительность ПЦР при использовании праймеров, комплементарных N-гену, когда удается выявлять РНК вируса в пробах, содержащих вирус в титре 10 МЛД50. Методом ПЦР можно выявлять РНК вируса даже в разложившемся патологическом материале.

В настоящее время разработаны и широко используются на практике подтверждающие (конфирматорные) тесты, такие как ПЦР в обратно-транскриптазном исполнении (ОТ-ПЦР). Метод ОТ-ПЦР — высокочувствительный и наиболее эффективный. РНК экстрагируется из тканей инфицированного вирусом органа, транскрибируется в кДНК, которая затем амплифицируется методом ПЦР. Для постановки ОТ-ПЦР необходимы праймеры, полученные к консервативным областям генома вируса бешенства. Обычно используются гены, кодирующие нуклеопротеин или N-белок.

Метод ПЦР высокоспецифичен и очень чувствителен. Является одним из наиболее точных тестов детекции рабического антигена, позволяет диагностировать бешенство даже при наличии в материале хотя бы одного вириона. В основе теста лежит комплементарное достраивание РНК-матрицы, осуществляемое in vitro с помощью фермента РНК-полимеразы. В последние годы ПЦР находит все более широкое применение для диагностики и мониторинга вирусных инфекций. Однако методика проведения сложна, дорогостояща и пока недостаточно унифицирована для рутинного применения.

Цитологические методы в настоящее время имеют ограниченное диагностическое значение, но при ряде инфекций по-прежнему должны применяться. Исследуются материалы аутопсии, биопсии, мазки, которые после соответствующей обработки окрашиваются и анализируются под микроскопом. При бешенстве — это выявление включений в цитоплазме клеток (тельца Бабеша – Негри).

Выделение вируса. Выделение вируса может быть необходимым для подтверждения результатов тестов по определению антигена и для более детальной характеристики изолятов. И хотя этот метод является одним из самых старых и трудоемких методов диагностики, сегодня выделение вируса с последующей идентификацией с помощью одного из современных методов (ИФА с моноклональными антителами или ПЦР) является наиболее достоверным методом диагностики, т. н. «золотой стандарт».

Результативность методов диагностики бешенства может варьировать в зависимости от ряда факторов (стадии болезни, сроков забора материала, качества полученных проб, условий их хранения, опытности персонала, качества реактивов и др.). Если положительный результат подтверждает бешенство, то отрицательный не всегда свидетельствует об отсутствии болезни. Поэтому при бешенстве эксперты ВОЗ рекомендуют использовать несколько тестов, особенно МФА в сочетании с биопробой на новорожденных (2–3 дневных) белых мышах.

Все работы с материалом, предположительно содержащим вирус бешенства, равно как и с животными, подозрительными на бешенство, должны проводиться с соблюдением мер личной безопасности. Медицинские работники и ветеринарные врачи должны работать в халатах, перчатках, масках.

По окончанию работы боксы обрабатывают 3% раствором перекиси водорода.

Флаконы, ампулы и инструменты, а также оставшиеся материалы, содержащие вирус бешенства, и всю посуду после работы обеззараживают автоклавированием в течение 1 часов при 1,5 атм (режим «убивки»).

Средства индивидуальной защиты обеззараживают кипячением или автоклавированием. Рабочую поверхность стола и руки обеззараживают дезраствором (0,5% раствор хлорамина).

источник

специфичные в отношении вируса бешенства нейтрализующие моноклональные антитела человека и нуклеиновые кислоты и связанные с ними способы

Изобретение относится к иммунологии и биотехнологии. В изобретении описывается антитело и его фрагменты, нейтрализующие вирус бешенства, и способ лечения субъекта, подвергшегося воздействию вируса бешенства с использованием указанного антитела и его фрагмента. Раскрыты варианты выделенных нуклеиновых кислот, кодирующих полипептиды, несущих соответственно легкую и тяжелую цепь антитела. Описан экспрессирующий вектор, несущий по меньшей мере одну из указанных нуклеиновых кислот. Использование изобретения повышает длительность выживания субъектов после воздействия на них вируса бешенства и может найти применение в соответствующей профилактической терапии таких субъектов. 6 н. и 8 з.п. ф-лы, 1 ил., 1 табл.

1998, Jun, 4 (1): стр.37-47. http://ww../query.fcgi&cmd=Retrieve&db=Protein&list_u >

Изобретение относится к областям молекулярной биологии и иммунологии, и, более конкретно, к последовательностям нуклеиновой кислоты и аминокислотным последовательностям специфичных в отношении вируса бешенства нейтрализующих моноклональных антител человека.

Бешенство представляет собой острое неврологическое заболевание, вызванное инфицированием центральной нервной системы вирусом бешенства, членом рода Lyssavirus семейства Rhabdoviridae. Имея большое историческое значение вследствие своей древности и устрашающей природы вызываемого заболевания, вирус бешенства продолжает являться важной опасной инфекцией человека и ветеринарной инфекцией по причине наличия обширных резервуаров в разных видах диких животных. По большей части земного шара различные варианты вируса бешенства являются эндемичными для конкретных видов наземных животных, при этом между ними относительно мало общего. Хотя на некоторых островах, включая Объединенное Королевство, Австралию, Японию и многие другие острова, нет наземного бешенства, в UK и Австралии недавно обнаружили вирусы бешенства и вирусы, подобные вирусам бешенства, ассоциированные с летучими мышами.

Вирус бешенства обычно представляет собой пулевидную частицу, покрытую оболочкой, в среднем 75 на 180 нанометров. Вирион состоит из однонитевой антисмысловой геномной РНК и пяти структурных белкоз: нуклеопротеиновых молекул (N), фосфопротеина (NS), полимеразы (L), матриксного белка (К) и вирусного гликспротеина (G).

Белки N и G несут антигенные детерминанты, которые обеспечивают характеристику серотипов различных штаммов вируса бешенства. N-детерминанты являются высококонсервативными среди различных вирусных изолятов и поэтому широко используются как мишени для иммунохимической детекции инфекции вирусом бешенства с применением специфических антител. С другой стороны, антигенные детерминанты, находящиеся на белке G существенно варьируют среди штаммов вируса бешенства. Вируснейтрализующие антитела, полученные путем иммунизации инактивированным вирусом, направлены против G. Хотя ясно, что Т-клеточные реакции на G, N и NS участвуют в иммунном ответе на вирус в экспериментальных условиях, оценка иммунитета против вируса бешенства в основном ограничена серологией, особенно что касается вируснейтрализующих антител.

В тех областях земного шара, где еще обычным является бешенство человека, основным резервуаром вирусов, инфицирующих человека, является собака. Там, где собачье бешенство в значительной степени элиминировано вакцинацией, варианты вируса переносят лисы, койоты, скунсы, еноты, летучие мыши и различные другие млекопитающие. Во многих областях резервуары вируса в дикой природе продолжают расширяться. Более того, вирус бешенства может переноситься от резервуарных видов человеку или другим конечным хозяевам животными, в норме не ассоциированными с бешенством, такими как кошки, кролики, и т.д.

Будучи почти неизбежно фатальным, как только возникают клинические симптомы, бешенство может предотвращаться срочным лечением инфицированного субъекта комбинацией пассивной и активной иммунизации. Пассивная иммунизация включает введение предварительно образованных антител, нейтрализующих вирус бешенства, полученных из объединенной сыворотки субъектов, иммунных к бешенству (иммунный к бешенству глобулин человека; HRIG) или гипериммунных лошадей (иммунный к бешенству глобулин лошади; ERIG). Оба типа реагентов несут реципиентам некоторые опасности, включая вариабельную антигенную специфичность, и, таким образом, действенность в отношении различных вирусных изолятов.

HRIG получают из объединенных сывороток человека, поэтому имеется возможность, что препараты HRIG могут контаминироваться известными и неизвестными болезнетворными микроорганизмами человека. С другой стороны, будучи препаратом чужеродного антигена, ERIG связан с тяжелыми анафилактическими реакциями. Мышиные моноклональные антитела против вируса бешенства предложены к использованию при профилактике после воздействия, но, как и ERIG, являются антигенно чужеродными для человека. Это может приводить к их быстрому выведению из организма человека, а также к их способности вызвать анафилактическую реакцию.

Для представления лучшего реагента были получены моноклональные антитела человека путем слияния трансформированных вирусом Эпштейна-Барра (EBV), специфичных в отношении вируса бешенства В-клеток человека с гетерогибридными донорами мышь-человек. Клоны кДНК, кодирующие тяжелые и легкие цепи антител из данных клеток, конструировали таким образом, что данные антитела экспрессировались в гетерологических экспрессирующих системах. Данные конструкции обеспечивали продукцию нейтрализующих вирус бешенства антител человека определенной специфичности в контролируемой системе, очищенной от возможных вредных примесей. Настоящее изобретение относится к данным моноклональным, нейтрализующим вурус бешенства антителам человека, последовательностям нуклеиновой кислоты их тяжелых и легких цепей и аминокислотным последовательностям кодируемых белков. Настоящее изобретение также относится к способам применения данных моноклональных антител в качестве терапевтически эффективного профилактического лечения субъектов, подвергшихся воздействию вируса бешенства, после данного воздействия.

Целью настоящего изобретения является выделение молекул нуклеиновой кислоты, содержащих последовательность нуклеиновой кислоты тяжелой цепи и легкой цепи, кодирующую аминокислотную последовательность тяжелой цепи и легкой цепи. Аминокислотные последовательности тяжелой цепи и легкой цепи принадлежат моноклональному, нейтрализующему вирус бешенства антителу, которое специфично связывается с белком вируса бешенства.

В одном из осуществлений настоящего изобретения данные выделенные молекулы нуклеиновой кислоты, которые кодируют моноклональное, нейтрализующее вирус бешенства антитело, происходят из последовательностей кДНК тяжелой цепи SEQ ID NO: 1 и легкой цепи SEQ ID NO: 2.

Целью настоящего изобретения является предоставление выделенного моноклонального, нейтрализующего вирус бешенства антитела, которое кодируется клонами кДНК, кодирующими тяжелую и легкую цепь антитела, которые экспрессируются в гетерологических экспрессирующих системах и очищаются от вредных примесей. В одном из осуществлений настоящего изобретения аминокислотная последовательность выделенного моноклонального, нейтрализующего вирус бешенства антитела человека совпадает с SEQ ID NO: 3 и SEQ ID NO: 4, соответственно.

Настоящее изобретение относится к гену слияния, кодирующему химерную легкую цепь иммуноглобулина. Химерная легкая цепь содержит первую последовательность ДНК, кодирующую вариабельный регион легкой цепи иммуноглобулина моноклонального, нейтрализующего вирус бешенства антитела, продуцируемого клеточной линией гетерогибридомы; и вторую последовательность ДНК, кодирующую константный регион легкой цепи человека. Дальнейшей целью настоящего изобретения является предоставление экспрессирующего вектора для экспрессии данного гена слияния. Дальнейшей целью является предоставление клетки-хозяина для данного экспрессирующего вектора.

Настоящее изобретение относится к гену слияния, кодирующему химерную тяжелую цепь иммуноглобулина. Химерная тяжелая цепь содержит первую последовательность ДНК, кодирующую зариабельный регион тяжелой цепи иммуноглобулина моноклонального, нейтрализующего вирус бешенства антитела, продуцируемого клеточной линией гетерогибридомы; и вторую последовательность ДНК, кодирующую константный регион тяжелой цепи человека. Дальнейшей целью настоящего изобретения является предоставление экспрессирующего вектора для экспрессии данного гена слияния. Дальнейшей целью является предоставление клетки-хозяина для данного экспрессирующего вектора.

Другой целью настоящего изобретения является предоставление выделенного моноклонального, нейтрализующего вирус бешенства антитела, происходящего из гена слияния, кодирующего химерную легкую цепь иммуноглобулина, и гена слияния, кодирующего химерную тяжелую цепь иммуноглобулина.

Целью настоящего изобретения является предоставление способа лечения субъекта, подвергшегося воздействию вируса бешенства, путем введения субъекту терапевтически эффективного количества моноклонального, нейтрализующего вирус бешенства антитела человека, которое кодируется клонами кДНК, кодирующими тяжелую и легкую цепь антитела, которые экспрессируются в гетерологических экспрессирующих системах и очищаются от вредных примесей, предотвращая таким образом распространение вируса бешенства в центральную нервную систему.

Настоящее изобретение относится к моноклональным антителам, которые специфично связываются с гликопротеином различных штаммов вируса бешенства. Лечение после воздействия вируса моноклональным антителом или смесью различных моноклональных антител нейтрализует вирус бешенства в месте проникновения и предотвращает распространение вируса в центральную нервную систему (ЦНС). Таким образом, в случаях чрезкожного пути воздействия вируса бешенства или его воздействия на слизистые, специфичные в отношении бешенства моноклональные антитела применяют на месте укуса, а также вводят системно. Поскольку репликация вируса происходит почти исключительно в нейронах, нейтрализация и выведение вируса моноклональными антителами по настоящему изобретению перед проникновением в ЦНС является эффективной профилактикой после воздействия вируса.

В-клетки человека, использованные для гибридизации, получали из периферической крови 5 доноров в период между 7 и 21 сутками после третьей дозы первичной вакцинации от бешенства и 5 иммунных к бешенству доноров через 10-21 сутки после введения стимулирующей вакцины. Во всех случаях применяемой вакциной являлась вакцина диплоидных клеток человека Rabivac (вирусный штамм Pitman Moore 1503-3M, Behringwerke, Марбург, ФРГ). Все доноры являлись негативными при тестировании на ВИЧ и гепатит В. Клетки гибридной гетеромиеломы мышь-человек SHM-D33, задействованные в качестве гибридомных партнеров слияния (Teng, N.N. et al, Proc. Natl. Acad. Sci. USA 80, 7308, 1983) и лейкоциты мармозетки В95-8, трансформированные вирусом Эпштейна-Барра (EBV), применяемым в качестве источника EBV (Henderson et al., J. Exp. Med. Vol.76, p.152, 1977), были получены из АТСС (Rockvilie, Мэриленд).

Для оценки способности препаратов антител нейтрализовать различные вирусные штаммы бешенства использовали некоторое количество фиксированных лабораторных штаммов с различной антигенностью, а также два представительных уличных вируса бешенства. Фиксированные штаммы Evelyn-Rokitnicki-Abelseth (ERA), вирусный стандарт для введения, адаптированный для мозга мыши (CVS-24) или для клеточной культуры (CVS-11), и Pitman-Moore (PM) были получены из вирусной коллекции Университета Томаса Джефферсона. Вирус бешенства летучей мыши серой ночницы (SHBRV), ассоциированный с большей частью последних случаев бешенства в Соединенных Штатах Америки, и уличный вирус бешенства койота/мексиканский вирус собачьего бешенства (COSRV), являющийся членом семейства вирусов собачьего бешенства, были получены как описано (Morimoto et al., Proc. Natl. Acad. Sci. USA, vol.93, p.5653, 1996). Очистка вируса и получение гликопротеина (G) и нуклеопротеина (N) были описаны в других источниках (Dietzschold et al, World Health Organization, Geneva, p.175, 1996).

Трансформация EBV человеческих PBL

Мононуклеарные клетки периферической крови (РВМС) выделяли из цельной крови центрифугированием в градиенте плотности на Ficoll-Paque (Amersham Pharmacia Biotech, Piscataway, Нью-Джерси), как подробно описано в других источниках (Plebanski et al., Immunology Vol.75, p.86, 1992). Затем удаляли Т-клетки путем негативной селекции с использованием покрытых моноклональными антителами против CD2 магнитных гранул (Dynal Inc, Lake Success, Нью-Йорк) и концентратора магнитных частиц (Dynal). СD2-негативные клетки, преимущественно В-клетки, собирали и иммортализовали, как описано ранее (Swaminathan, 1992). В кратком изложении, клетки В95-8, культивированные до слияния в RPMI 1640 (Gibco BRL Life Technologies, Grand Island, Нью-Йорк), дополненной 10% фетальной сыворотки теленка (FBS; Gibco), лизировали путем замораживания-оттаивания на сухом льду для высвобождения внутриклеточного EBV. Надосадочную жидкость, содержащую EBV, осветляли центрифугированием при 1000 об/мин в течение 10 мин и путем фильтрации через фильтр с порами 0,45 мкм. Вирус концентрировали центрифугированием при 8000 об/мин в течение 2 ч при 4°С 7·10 6 В-клеток (ресуспендированных в 1 мл культуральной среды В95-8) инкубировали при 37°С в течение 2 ч с вирусом, полученным из 25 мл клеток В95-8. После инфекции клетки дважды отмывали культуральной средой, помещали в 96-луночный плоскодонный планшет для микротитрования (Nunc, Fisher Scientific, Pittsburgh, Пенсильвания) в концентрации 1·10 4 клеток/лунку и культивировали при 37°С в увлажненной атмосфере из 5% CO 2 и 95% воздуха.

Образование гетерогибридов мышь-человек

После того, как трансформированные EBV клетки культивировали примерно в течение 4 недель, надосадочную жидкость собирали и тестировали на предмет наличия антител, специфичных в отношении вируса бешенства посредством ELISA. Позитивные лунки переносили вначале в культуры объемом 1 мл, а затем в культуры объемом 2 мл (48- и 24-луночные планшеты, Nunc), и затем анализировали надосадочную жидкость посредством теста быстрого ингибирования фокусов флуоресценции (RFFIT) на предмет антител, нейтрализующих вирус бешенства, как подробно описано в других источниках (Hooper, ASM Press, WA p.755, 1997). Клеточные линии, продуцирующие нейтрализующие антитела, подвергали гибридизации с клетками SHM-D33 (инвентарный номер АТСС CRL1668) следующим образом. Равные количества SHM-D33 и клеток, трансформированных EBV (примерно 5·10 6 каждых) совместно добавляли в стерильную полистирольную круглодонную пробирку (Falcon, Fisher Scientific) и центрифугировали при 1000 об/мин в течение 10 мин. Клетки дважды отмывали бессывороточной средой и ресуспендировали клеточный осадок в 100 мкл среды.

Пробирки нагревали на водяной бане с температурой 37°С в течение 1 мин, и затем в течение 45-секундного периода добавляли по каплям 0,5 мл теплого (37°С) 50% (мас./об.) полиэтиленгликоля (Sigma Chemical Co., Сент-Луис, Миссури, кат. №Р-7181) при осторожном встряхивании пробирки. Затем реакцию слияния останавливали медленным добавлением 3 мл бессывороточной среды в течение 30 сек, с последующим добавлением 9 мл в течение 30 сек. Пробирки выдерживали при комнатной температуре в течение 8 мин и затем инкубировали в течение 2 мин на водяной бане с температурой 37°С. Затем клетки центрифугировали при 500 г в течение 3 мин и осторожно ресуспендировали клеточный сгусток в 30 мкл среды Dulbecco (IMDM; Gibco), в модификации Iscove, содержащей 10% FBS, а также 0,04 мкМ аминоптерина (Gibco) и 10 мкМ уабаина (Sigma) для селекции против негибридизовавшихся клеток. Суспензии клеток помещали в 96-луночные плоскодонные планшеты для микротитрования в концентрации 1·10 4 клеток на лунку и инкубировали, как описано для клеточных линий.

Когда колонии гетерогибридных клеток стали сформированными (примерно 6 недель культивирования), надосадочные жидкости тестировали на продукцию антител, специфичных в отношении вируса бешенства путем ELISA и RFFIT. Продуцирующие антитела клетки клонировали как минимум три раза путем лимитирующего разведения в планшетах для микротитрования. Клетки титровали в 96-луночных круглодонных планшетах в 2-кратных разведениях, начиная от 4 клеток на лунку. Клеткам из лунок, содержащих в среднем 0,25 клеток или менее, давали возможность пролиферировать для сбора надосадочной жидкости и дальнейшего анализа.

Анализ антител, специфичных в отношении вируса бешенства, посредством ELISA

Специфичность и изотип антител оценивали путем твердофазного ELISA. Планшеты (PolySorb, Nunc) при комнатной температуре, в увлажненной камере в течение ночи покрывали 5 мкг/мл вирусом бешенства ERA, гликопротеином или нуклеопротеином, разведенных в фосфатно-солевом буфере (PBS). Затем планшеты блокировали 5% порошковым молоком в PES и отмывали в PBS, содержащем 0,05% Tween 20 (PBS-Tween) перед добавлением образцов надосадочной жидкости.

После инкубации при комнатной температуре в течение 2 ч планшеты промывали PBS-Tween для удаления несвязавшегося первичного антитела и добавляли различные конъюгированные с ферментом или биотинилированные вторичные антитела, специфичные в отношении различных изотипов тяжелых цепей человека, с инкубацией в течение 1 ч при комнатной температуре. Вторичное антитело детектировали или по продукции в среде растворимого конечного продукта после добавления подходящего субстрата (3,3′,5,5′-тетраметилбензидин (ТМВ) в фосфатно-цитратном буфере или п-нитрофенилфосфат (PNPP) в 0,1М глициновом буфере, Sigma) или после добавления авидинащелочной фосфатазы (30 мин при КТ) и субстрата PNPP. Реакцию пероксидаза-ТМВ останавливали добавлением 2М H 2 SO 4 . Значения поглощения считывали на спектрофотометре для микропланшетов (Biotek, Winooski, Вермонт) при 450 нм для продукта ТМВ и при 405 нм для реакции PNPP.

Образцы надосадочной жидкости для каждой трансформированной клеточной линии анализировали на предмет наличия антител, нейтрализующих вирус бешенства с использованием разновидности теста быстрого ингибирования фокусов флуоресценции (RFFIT), как описано ранее (Hooper, ASM Press, WA p.755, 1997). Образцы надосадочной жидкости (50 мкл) подвергали разделению в 96-луночных плоскодонных планшетах (Nunc). 30 мкл разведения вируса бешенства, о котором известно, что оно вызывает 80-90% инфицирования индикаторных клеток, добавляли в каждый тестируемый образец, и инкубировали планшеты при 37°С в течение 1 ч. Контрольные образцы, отрицательные со средой и положительные с сывороткой, иммунной к бешенству, включали в каждый анализ. После инкубации 30 мкл клеток почки детеныша хомячка (ВНК) в концентрации 1,8×10 6 клеток/мл добавляли в каждую лунку, и инкубировали культуры в течение ночи при 37°С. Затем планшеты единожды отмывали ледяным PBS и фиксировали ледяным 90% ацетоном в течение 20 мин при 20°С. После фиксации ацетон удаляли, и планшеты сушили на воздухе. Для детекции инфицированных клеток ВНК к каждой лунке добавляли 40 мкл FITC-моноклонального глобулина против нуклеопротеина вируса бешенства (Centocor, Malvern, Пенсильвания) и инкубировали в течение 45 мин при 37°С. Затем планшеты трижды отмывали дистиллированной водой и исследовали под флуоресцентным микроскопом.

Очистка антител путем аффинной хроматографии

Антитело IgG1 очищали с использованием колонки с белком А (Protein A Sepharose Fast Flow, Amersham Pharmacia Biotech). В кратком изложении, надосадочные жидкости осветляли фильтрацией через мембрану с порами 0,45 мкм и доводили рН до 8,0 1н NaOH. Надосадочную жидкость пропускали через колонку с линейной скоростью потока, примерно равной 100 см/час. После промывки в PBS (pH 8) антитело элюировали с колонки с использованием 0,1М раствора лимонной кислоты, и затем диализовали против PBS.

Антитело IgG3 очищали с использованием колонки с белком G (Protein G Sepharose Fast Flow, Amersham Pharmacia Biotech). Надосадочную жидкость, содержащую IgG3, осветляли фильтрацией через мембрану с порами 0,45 мкм и доводили pH до 7,0 1н NaOH. Надосадочную жидкость пропускали через колонку с линейной скоростью потока, примерно равной 11 см/час. После промызки PBS антитело элюировали с колонки с использованием 0,1М глицинового буфера (pH 3,0), и затем диализовали против PBS.

Антитело IgM очищали с использованием маннансвязываюшего белка и модификации ранее описанного способа (Nevens et al., J. Chromatogr, vol.597, p.247, 1992). В кратком изложении, надосадочную жидкость, содержащую IgM, обрабатывали EDTA, доводили pH до 8,0 1М NaOH, фильтровали и охлаждали до 4°С. Агарозу с маннансвязывающим белком (Sigma) промывали в колонке при 4°С связывающим буфером, состоящим из 0,1 М NaHCO 3 /0,5 М NaCl, pH 8,3, и затем добавляли надосадочную жидкость и инкубировали на колонке в течение 15 мин при 4°С. Затем колонку отмывали несколькими объемами связывающего буфера и доводили до RT в течение 1 ч. IgM элюировали из колонки связывающим буфером при RT и диализовали против PBS.

Концентрации белка в диализованных препаратах антител определяли с использованием анализа по детекции белка (Bio-Rad Laboratories, Hercules, Калифорния) следующим образом. 100 мкл образца добавляли к 5 мл разведения 1/5 концентрата красящего реагента и инкубировали при RT в течение 10 минут. Отрицательный контроль PBS и различные белковые стандарты бычьего сывороточного альбумина (BSA) включали в каждый анализ. После инкубации образцы считывали в спектрофотометре при 595 нм. Концентрации белка в тестируемых образцах вычисляли по сравнению с поглощением стандартов BSA. Чистоту препаратов антител оценивали путем электрофореза в 12,5% полиакриламидном геле в восстанавливающих условиях (SDS-PAGE). Очищенные антитела характеризовались на SDS-PAGE двумя основными полосами, соответствующими тяжелым и легким цепям иммуноглобулина.

Получение, выделение и определение последовательности клонов кДНК Общую РНК выделяли из клеток гибридомы JA с использованием RNAzol В (Biotecx Laboratories, Houston). Реакции обратной транскрипции проводили при 42°С в течение 1 ч с обратной транскриптазой вируса миелобластоза птиц (Promega) и олиго(dT)-праймера. Часть продуктов обратной транскрипции подвергали амплификации полимеразной цепной реакцией (PCR) с использованием специфичных праймеров тяжелых цепей: праймер IgG-HF1 (5′-ACC ATG GAGTTTGGGCTGAG-3′ (SEQ ID NO: 5), старт-кодон подчеркнут, инвентарный номер Y14737), и праймер IgG-HR2 (5′-AC TCA TTTACCCGGGGACAG-3′ (SEQ ID NO: 6), стоп-кодон подчеркнут, инвентарный номер Y14737) или специфичных праймеров легких цепей: праймер IgG-LF5 (5′-AGC ATG GAAGCCCCAGCTCA-3′ (SEQ ID NO: 7), старт-кодон подчеркнут, инвентарный номер М63438), и праймер IgG-LR2 (5′-CT CTA ACACTCTCCCCTGTTG-3′ (SEQ ID NO: 8), стоп-кодон подчеркнут, инвентарный номер М63438). Амплификацию проводили в 35 циклов денатурации при 94°С в течение 60 секунд, с отжигом при 50°С в течение 60 секунд, и полимеризацией при 72°С в течение 90 секунд с ДНК-полимеразой Taq (Promeca). Продукты PCR (1,4 тыс.осн. для тяжелой цепи, 0,7 тыс.осн. для легкой цепи) очищали и определяли последовательность с использованием набора для циклического определения последовательности AmpliTaq (Perkin-Elmer) со специфическими праймерами. Продукты PCR клонировали в клонирующий вектор ТА, pCR2.1 (Invitrogen). Определяли последовательность клонированных кДНК тяжелой цепи и легкой цепи с использованием набора для циклического определения последовательности AmpliTaq (Perkin-Elmer) со специфическими праймерами.

Последовательности, кодирующие моноклональные антитела, нейтрализующие вирус бешенства

кДНК моноклональных антител и комплементарные ей последовательности представляют собой нуклеиновые кислоты моноклональных антител, описанные по настоящему изобретению. В описанном здесь конкретном осуществлении последовательность кДНК моноклонального антитела предоставлена для тяжелой цепи (SEQ ID NO: 1) и легкой цепи (SEQ ID NO: 2) моноклонального антитела из клона JA, будучи, таким образом, лишенной каких-либо интронов.

Данное изобретение также относится к однонитевым олигонуклеотидам для применения в качестве праймеров в PCR, в которой амплифицируется фрагмент, содержащий последовательность моноклонального антитела, относящийся, например, к вариабельному или гипервариабельному региону моноклонального антитела. Олигонуклеотид характеризуется последовательностью подлежащей гибридизации части, по крайней мере, по длине, равной 8 нуклеотидам, гена моноклонального антитела, а другой нуклеотид характеризуется последовательностью, обратно комплементарной нижележащей последовательности (в положении «даунстрим») той же цепи гена моноклонального антитела, так что каждый нуклеотид служит праймером для синтеза в направлении навстречу другому. Олигонуклеотиды по длине предпочтительно попадают в интервал 10-35 нуклеотидов.

Настоящее изобретение относится к полноразмерным последовательностям кДНК тяжелой и легкой цепей моноклонального антитела клона гетерогибридомы JA (SEQ ID NO: 1 и SEQ ID NO: 2, соответственно), и к кодируемым полипептидам аминокислот №1-474 тяжелой цепи (SEQ ID NO: 3) и аминокислот №1-234 легкой цепи (SEQ ID NO: 4).

В описанном здесь конкретном осуществлении изобретение относится к последовательности нуклеиновой кислоты моноклонального антитела из клона гетерогибридомы JA. В предпочтительном, но не ограничивающем аспекте изобретения клон гетерогибридомы JA является источником кДНК моноклонального антитела.

Функциональные эквиваленты моноклональных антител, нейтрализующих вирус бешенства

Данное изобретение также включает функциональные эквиваленты антител, представленных в данном описании. Функциональные эквиваленты обладают характеристиками связывания, сравнимыми с таковыми для антител, и включают, например, химерные или одноцепочечные антитела, а также их фрагменты. Способы продукции таких функциональных эквивалентов описаны в заявке РСТ WO 93/21319, в Европейской патентной заявке №239400; в заявке РСТ WO 89/09622; Европейской патентной заявке 338745; и Европейской патентной заявке ЕР 332424.

Функциональные эквиваленты включают полипептиды с аминокислотными последовательностями, по существу теми же самыми, что аминокислотные последовательности вариабельных или гипервариабельных регионов антител по настоящему изобретению. «По существу те же самые» аминокислотные последовательности определены здесь как последовательность по крайней мере с 70%-ной, предпочтительно, по крайней мере с 80%-ной, и, более предпочтительно, по крайней мере с 90%-ной гомологией в отношении другой аминокислотной последовательности, что определяется по поиску способом FASTA согласно Pearson and Lipman, Proc. Natl. Inst. Acad. Sci. USA 85, 2444-2448, 1988. Химерные антитела содержат константные регионы, происходящие в основном или исключительно из константных регионов человеческого антитела, и вариабельных регионов, происходящие в основном или исключительно из последовательности вариабельного региона моноклонального антитела из любой стабильной гетерогибридомы (Champion, J. M., et al., Journal of Immunological Methods, 235 81-90, 2000).

Одноцепочечные антитела или Fv-фрагменты представляют собой полипептиды, состоящие из вариабельного региона тяжелой цепи антитела, связанного с вариабельным регионом легкой цепи, при наличии или в отсутствие соединяющего линкера. Таким образом, Fv включает участок, комбинирующий целое антитело.

Функциональные эквиваленты, кроме того, включают фрагменты антител, которые обладают теми же или, по существу, теми же характеристиками связывания, как таковые для целого антитела. Такие фрагменты могут содержать один или несколько Fab-фрагментов F(ab’).sub.2-фрагмента. Предпочтительно, фрагменты антитела содержат все шесть определяющих комплементарность регионов целого антитела, хотя фрагменты, содержащие меньшее максимального количество таких регионов, такое как три, четыре или пять определяющих комплементарность региона, также являются функциональными. Функциональные эквиваленты являются членами класса иммуноглобулинов IgG и его подклассов, но могут представлять собой или сочетать любые из следующих классов иммуноглобулинов: IgM, IgA, IgD или IgE, и их подклассов. Тяжелые цепи разных подклассов, таких как подклассы IgG, ответственны за различные эффекторные функции, и, таким образом, за счет выбора требуемого константного региона тяжелой цепи продуцируют химерные антитела с требуемой эффекторной функцией. Предпочтительными константными регионами являются гамма-1 (IgG1), гамма-3 (IgG3) и гамма-4 (IgG4). Константный регион легкой. цепи может быть типа каппа или лямбда.

Иммуноглобулины по настоящему изобретению могут быть моновалентными, дивалентными или поливалентными. Моновалентные иммуноглобулины представляют собой димеры (HL), образованные химерной тяжелой цепью, ассоциированной через дисульфидные мостики с химерной легкой цепью. Дивалентные иммуноглобулины представляет собой тетрамеры (H.sub.2 L.sub.2), образованные двумя димесами, ассоциированными по крайней мере через один дисульфидный мостик.

Стандартные способы рекомбинантной ДНК

Стандартные способы рекомбинантной ДНК описаны в Sambrook et al., «Molecular Cloning», Second Edition, Cold Spring Harbor Laboratory Press (1987) и Ausubel et al. (Eds) «Current Protocols in Molecular Biology», Green Publishing Associates/Wiley-Interscience, New York (1990).

В кратком изложении, выбирают подходящим источником клеток, содержащих молекулы нуклеиновой кислоты, которые экспрессируют требуемую ДНК, такую как относящуюся к антителу или эквиваленту антитела. Общую РНК получают путем стандартных процедур из подходящего источника. Общую РНК применяют для непосредственного синтеза кДНК. Стандартные способы выделения РНК и синтеза кДНК описаны в стандартных руководствах по молекулярной биологии, таких как, например, те, что описаны выше.

кДНК может быть амплифицирована известными способами. Например, кДНК может использоваться в качестве матрицы для амплификации путем полимеразной цепной реакции (PCR); см. Saiki et al., Science, 239, 487, 1988 или Mullis et al., патент США №683195. Последовательности олигонуклеотидных праймеров для амплификации путем PCR происходят из известных, подлежащих амплификации последовательностей. Данные олигонуклеотиды синтезируют способами, известными в данной области. Подходящие способы включают те, что описаны Caruthers в Science 230, 281-285, 1985.

Смесь вышележащих и нижележащих (в положениях «апстрим» и «даунстрим») олигонуклеотидов применяют при амплификации путем PCR. Условия оптимизируют для каждой конкретной пары праймеров по стандартным процедурам. Продукт PCR анализируют, например, путем электрофореза, на предмет кДНК, характеризующейся правильным размером, соответствующим последовательности между праймерами.

Альтернативно, кодирующий регион может амплифицироваться в двух или более перекрывающихся фрагментах. Перекрывающиеся фрагменты конструируют с включением сайтов рестрикции, позволяющих объединение фрагментов в интактную кДНК.

Для выделения целых кодирующих белок регионов тяжелых и легких цепей каждого моноклонального антитела из каждой клеточной линии гетерогибридомы вышележащий олигонуклеотидный праймер для PCR, например, комплементарен последовательности на 5′-конце, включая старт-кодон ATG и по крайней мере 5-10 нуклеотидов левее старт-кодона. Нижележащий олигонуклеотидный праймер для PCR комплементарен последовательности на 3′-конце требуемой последовательности ДНК. Требуемая последовательность кДНК кодирует целую часть тяжелой и легкой цепей каждого моноклонального антитела, включая стоп-кодон.

Подлежащая амплификации кДНК, такая как та, что кодирует антитела или эквиваленты антител, также может реплицироваться в состав широкого спектра клонирующих векторов в широком спектре клеток-хозяев. Клетка-хозяин может являться прокариотической или эукариотической.

Вектор, в который встраивается кДНК моноклонального антитела, может включать сегменты хромосомных, нехромоссмных и синтетических последовательностей ДНК. Некоторые подходящие прокариотические клонирующие векторы включают в качестве неограничивающих примеров плазмиды из Е.coli, такие как colEl, pCRl, pBR322, pMB9, pUC, pKSM и RP4. Прокариотические векторы также включают в качестве неограничивающих примеров производные ДНК фагов, таких как М13, и другие нитевидные фаги с однонитевой ДНК.

Вектор, содержащий подлежащую экспрессии кДНК моноклонального антитела, трансфицируется в подходящую клетку-хозяина, как описано ниже. Клетку-хозяина выдерживают в подходящей культуральной среде, и подвергают воздействию условий, в которых клетки и вектор реплицируются.

В основном химерные антитела продуцируют путем получения для каждого компонента легкой и тяжелой цепи химерного иммуноглобулина гена слияния, включающего первый сегмент ДНК, который кодирует по крайней мере функциональную часть специфичного к вирусу бешенства, предпочтительно к гликопротеину, нейтрализующего вариабельного региона человека (например, функционально перестроенного вариабельного региона с соединяющим сегментом), связанную со вторым сегментом ДНК, кодирующим по крайней мере часть человеческого константного региона. Каждый ген слияния встроен или включен в экспрессирующий вектор. Затем данными генами трансфицируют клетки-реципиенты, способные экспрессировать генные продукты. Трансфицированные клетки-реципиенты культивируют в условиях, которые дают возможность для экспрессии включенных генов, и получают экспрессированные иммуноглобулины или иммуноглобулиновые цепи.

Гены, кодирующие вариабельный регион тяжелых и легких цепей иммуноглобулина получают из лимфоидных клеток, которые продуцируют моноклональные антитела, нейтрализующие вирус бешенства. Например, клеточные линии гетерогибридомы, продуцирующие моноклональные антитела против гликопротеина вируса бешенства, представляют источник иммуноглобулинового вариабельного региона для настоящих химерных антител. Константные регионы получают из антителопродуцирующих клеток человека стандартными способами клонирования. Альтернативно, поскольку гены, представляющие два класса легких цепей и пять классов тяжелых цепей, были клонированы, константные регионы человеческого происхождения легко доступны из данных клонов. Химерные связывающие фрагменты антитела, такие как F(ab’).sub.2 и Fab-фрагменты, получают путем конструирования гена химерной тяжелой цепи в укороченной форме. Например, химерный ген, кодирующий часть тяжелой цепи F(ab’).sub.2 включает последовательности ДНК, кодирующие СН.sub.1-домен и шарнирный регион тяжелой цепи. Альтернативно, такие фрагменты могут быть получены ферментным расщеплением химерного иммуноглобулина. Например, расщепление папаином или пепсином может приводить к образованию Fab- или F(ab’).sub.2-фрагментов соответственно.

Предпочтительно, гены слияния, кодирующие тяжелую и легкую химерные цепи или их части, встроены в два разных экспрессируащих вектора, которые могут использоваться для совместной трансфекции клеток-реципиентов. Каждый вектор содержит два подлежащих селекции гена, один для селекции в бактериальной системе и один для селекции в эукариотической системе, причем каждый вектор имеет отличную от другого пару генов. Данные векторы дают возможность для продукции и амплификации генов слияния в бактериальных системах, и последующей совместной трансфекции эукариотических клеток и селекции совместно трансфицированных клеток. Неограничизающие примеры генов, подлежащих селекции в бактериальных системах, включают гены, обеспечивающие резистентность к ампициллину, и ген, обеспечивающий резистентность к хлорамфениколу. Предпочтительные два подлежащих селекции гена для селекции эукариотических трансфицированных клеток приведены в качестве неограничивающих примеров: (i) ген ксантин-гуанинфосфорибозилтрансферазы (gpt) и (ii) ген фосфотрансферазы из Тn5 (обозначенный neo). Селекция gpt основана на способности фермента, кодируемого данным геном, использовать ксантин в качестве субстрата для синтеза пуриновых нуклеотидов; аналогичный эндогенный фермент этого не может. В среде, содержащей ксантин и микофеноловую кислоту, которая блокирует преобразование инозин-монофосфата в ксантин-монофосфат, могут выживать только клетки, экспрессирующие ген gpt. Продукт neo блокирует ингибирование синтеза белка в эукариотических клетках, вызванное антибиотиком G418 и другими антибиотиками его класса. Две процедуры селекции могут применяться одновременно или последовательно для селекции на экспрессию генов цепей иммуноглобулина, введенных в эукариотическую клетку в двух разных векторах ДНК.

Вследствие присущей генетическому коду вырожденности другие последовательности ДНК, кодирующие по существу те же или функционально эквивалентные аминокислотные последовательности тяжелых и легких цепей, находятся в объеме настоящего изобретения. Измененные последовательности ДНК, которые могут использоваться по изобретению, включают делеции, дополнения и замены различных нуклеотидных остатков, приводящих к образованию последовательности, которая кодирует тот же или функционально эквивалентный генный продукт. Данный продукт сам может содержать делеции дополнения и замены различных аминокислотных остатков в последовательности легкой или тяжелой цепи, которые приведут к молчащим изменениям, с продукцией таким образом функционально эквивалентного моноклонального антитела.

По настоящему изобретению нуклеотидные последовательности, кодирующие тяжелую и легкую цепи моноклонального, нейтрализующего вирус бешенства антитела, его фрагмент или аналог, встраивают в. подходящий экспрессирующий вектор. Данный вектор содержит элементы, необходимые для транскрипции и трансляции встроенной последовательности, кодирующей белок, так что генерируются рекомбинантные молекулы ДНК, которые направляют экспрессию легкой и тяжелой иммуноглобулиновых цепей для образования моноклонального, нейтрализующего вирус бешенства антитела.

Предпочтительной реципиентной клеточной линией является линия клеток миеломы. Клетки миеломы могут синтезировать, конструировать и секретировать иммуноглобулины, кодируемые трансфицированными генами иммуноглобулина. Кроме того, они обладают механизмом гликозилирования иммуноглобулина. Особенно предпочтительной клеткой-реципиентом является клеточная линия миеломы, которая не продуцирует иммуноглобулин, такая как Sp2/0. Данные клеточные линии продуцируют только иммуноглобулин, кодируемый трансфицированными генами иммуноглобулина. Клетки миеломы могут выращиваться в культуре или в брюшной полости мышей, где секретируемый иммуноглобулин может быть получен из асцитной жидкости. В качестве подходящих клеток-реципиентов могут служить другие лимфоидные клетки, такие как В-лимфоциты или клетки гибридомы.

Существует несколько способов трансфекции лимфоидных клеток векторами, содержащими гены, кодирующие иммуноглобулин. Предпочтительным путем введения ДНК в лимфоидные клетки является введение путем электропорации. По данной процедуре клетки-реципиенты подвергаются воздействию электрического импульса в присутствии ДНК, подлежащей включению. Другим путем введения ДНК является слияние с протопластом. По данному способу лизоцим применяется для снятия клеточной стенки с бактерий, несущих рекомбинантную плазмиду, содержащую иммуноглобулиновый ген. Полученные в результате сферопласты сливаются с клетками миеломы посредством полиэтиленгликоля. После слияния с протопластом трансфицированные клетки отбирают и выделяют. Другой способ, который может использоваться для введения ДНК в клетки многих типов, представляет собой преципитацию фосфатом кальция.

Иммуноглобулиновые гены также могут экспрессироваться в нелимфоидных клетках, таких как бактерии или дрожжи. При экспрессии в бактериях тяжелые цепи и легкие цепи иммуноглобулина становятся частью телец включения. Таким образом, данные цепи должны быть выделены и очищены, а затем смонтированы в функциональные иммуноглобулиновые молекулы. Доступны другие стратегии для экспрессии в Е.coli (см., например, Pluckthun, A., BioTechnology 9: 545-551, 1991; Skerra, A. et al., BioTechnology 9: 273-278, 1991), включая секрецию из Е.coli в виде белков слияния, включающих сигнальную последовательность.

Вирус-нейтрализующее действие моноклонального антитела, состоящего из тяжелой цепи с аминокислотной последовательностью SEQ ID NO: 3 и легкой цепи с аминокислотной последовательностью SEQ ID NO: 4, было проверено против изолята вируса бешенства с использованием быстрого флуоресцентного теста (RFFIT) и отражено в Таблице 1. Активность испытуемого антитела была сравнена с нейтрализующей активностью коммерчески доступного препарата иммуноглобулина человека против бешенства (HRIG) (Imogam-rabies®, Pasteur Merieux Connaught).

Нейтрализующее действие препарата антитела была определена в четырех повторностях с двукратным шагом титрования, используя клетки нейробластомы мыши в качестве основы для роста вируса. Антитела были разбавлены до концентрации 0,02 Ед/0,1 мл раствора. Приблизительно 50-100 TCID 50 каждого вируса, из числа указанных в Таблице 1, культивировали с антителом в течение 90 минут при 37°С. Затем была добавлена аликвота из 200 мкл суспензии клеток нейробластомы мыши (50000 клеток/мл) и далее проводили культивирование в течение 40 часов при 37°С. После фиксации ацетоном инфицированные вирусом клетки визуализировались окрашиванием при помощи антирабического реактива, меченого изотиоцианатом флуоресцеина. Положительная оценка базировалась на результате, соответствующем полной нейтрализации вируса. Результаты приведены в Таблице 1 («+» нейтрализация; «0» — нет нейтрализации).

Моноклональное антитело на основе SEQ ID NO: 3/SEQ ID NO: 4 нейтрализовало каждый испытуемый вариант вируса бешенства. Моноклональное антитело нейтрализовало даже штамм вируса бешенства, полученный от летучей мыши (Lasionycteris noctivagans), который был устойчив к действию коммерческого препарата.

Классы МПК: C07K16/08 против материала из вирусов
C12N15/13 иммуноглобулины
C12N15/63 введение чужеродного генетического материала с использованием векторов; векторы; использование их хозяев; регулирование экспрессии
A61K39/42 вирусные
A61P31/12 противовирусные средства
Автор(ы): ХУПЕР Дуглас К. (US) , ДИТЦШОЛЬД Бернхард (US)
Патентообладатель(и): ТОМАС ДЖЕФФЕРСОН ЮНИВЕРСИТИ (US)
Приоритеты:
Таблица 1
Нейтрализация вируса бешенства под действием HRIG и моноклоналыюго антитела с SEQ ID NO:3/SEQ ID NO:4
Изолят вируса бешенства (источник образца) HRIG Mab
(1) Енот (Procyon lotor), восточная область США +
(2) Скунс (Mephitis mephitis), северная и центральная области США +
(3) Скунс (М.mephitis), южная и центральная области США +
(4) Скунс (М.mephitis),Калифорния, США +
(5) Серая лисица (Urocyon cinereoargenteus), Техас, США. +
(6) Серая летучая мышь (Lasiurus cinereus)
(7) Летучая мышь кожан бурый (Eptesicus fuscus), Нью Йорк, США +
(8) Летучая мышь кожан бурый (E.fuscus), Вашингтон, США +
(9) Летучая мышь вечерник серебристый (Lasionycteris noctivagans), США +
(10) Собака, граница США-Мексика +
(11)Собака, Таиланд +
(12) Собака, Филиппины +
(13) Арктическая лисица (Alopex lagopus), Аляска, США +

Эксперимент in vivo, по оценке эффективности нейтрализации вируса моноклональным антителом, состоящим из тяжелой цепи с аминокислотной последовательностью SEQ ID NO: 3 и легкой цепи с аминокислотной последовательностью SEQ ID NO: 4, был проведен с использованием выделенного вируса бешенства техасского койота. В качестве чувствительной модели использовали сирийских хомячков. Группе из шести испытуемых животных и группе из десяти контрольных животных вводили в правую икроножную мышцу (gastrocnemius) 50 мкл гомогената слюнной железы койота, инфицированного (в естественных условиях) вирусом бешенства, в разведении 1:1000. Через 24 часа хомячкам вводили 50 мкл моноклонального антитела с концентрацией 0,68 мг/мл, что эквивалентно приблизительно 0,24 ME противорабической активности.

Результаты эксперимента показали, что имеется достоверное различие в длительности выживания для двух групп (р=0.0075). Различие определено по критерию Манна-Уитни.

Для наглядности результаты представлены графически. Прямоугольники отражают результаты выживания в диапазоне 25-75 персентилей. Медиана (50 персентилей) в группе, получившей антитело, выделена в виде линии внутри прямоугольника. Интервальные отметки показывают разброс данных как максимальный и минимальный результат внутри группы.

1. Антитело, которое нейтрализует вирус бешенства, включающее полипептид тяжелой цепи, имеющий по меньшей мере 80%-ную гомологию по отношению к аминокислотной последовательности SEQ ID NO:3, и полипептид легкой цепи, имеющий по меньшей мере 80%-ную гомологию по отношению к аминокислотной последовательности SEQ ID NO:4.

2. Антитело по п.1, включающее полипептид тяжелой цепи, имеющий по меньшей мере 90%-ную гомологию по отношению к аминокислотной последовательности SEQ ID NO:3, и полипептид легкой цепи, имеющий по меньшей мере 90%-ную гомологию по отношению к аминокислотной последовательности SEQ ID NO:4.

3. Антитело по п.1 или 2, которое представляет собой антитело человека.

4. Антитело по п.1 или 2, которое представляет собой антитело IgG1.

5. Антитело по п.2, включающее полипептид тяжелой цепи, имеющий аминокислотную последовательность SEQ ID NO:3, и полипептид легкой цепи, имеющий аминокислотную последовательность SEQ ID NO:4.

6. Фрагмент антитела, охарактеризованного в любом из пп.1-5, нейтрализующий вирус бешенства, где указанный фрагмент выбран из группы, состоящей из Fv фрагментов, Fab фрагментов и F(ab’) 2 фрагментов.

7. Выделенная нуклеиновая кислота, которая кодирует полипептид, содержащий аминокислотную последовательность SEQ ID NO:3, где полипептид содержит тяжелую цепь антитела, нейтрализующего вирус бешенства.

8. Нуклеиновая кислота по п.7, включающая нуклеотидную последовательность SEQ ID NO:1, кодирующую аминокислотную последовательность SEQ ID NO:3.

9. Выделенная нуклеиновая кислота, которая кодирует полипептид, содержащий аминокислотную последовательность SEQ ID NO:4, где полипептид содержит легкую цепь антитела, нейтрализующего вирус бешенства.

10. Нуклеиновая кислота по п.9, включающая нуклеотидную последовательность SEQ ID NO:2, кодирующую аминокислотную последовательность SEQ ID NO:4.

11. Экспрессирующий вектор, включающий по меньшей мере одну нуклеиновую кислоту по любому из пп.7-10.

12. Вектор по п.11, включенный в клетку-хозяин.

13. Способ лечения субъекта, подвергшегося воздействию вируса бешенства, включающий введение указанному субъекту терапевтически эффективного количества антитела по любому из пп.1-5 или фрагмента по п.6.

14. Способ по п.13, в котором антитело или фрагмент применяют в месте укуса субъекта или вводят системно.

источник

Читайте также:  Делать ли уколы от бешенства при укусе домашней кошки